On the integration of robust AI-based image information for continuous patient stratification

Date:

AI paradigm now enables automatic and robust extraction of cardiac function descriptors from echocardiographic sequences, such as ejection fraction or strain. These descriptors provide fine-grained information that physicians consider, in conjunction with more global variables from the clinical record, to assess patients’ condition. In this presentation, I introduced a recently developed transformer-based framework that takes into account all descriptors extracted from medical records and echocardiograms. The framework aims to learn the representation of a challenging cardiovascular pathology, specifically hypertension. I showed that for descriptors whose interactions with hypertension are well documented, patterns are consistent with prior physiological knowledge, paving the way for further clinical studies to better understand this disease.


talk IUS 2023