

Inserm

On the integration of robust AI-based image information for continuous patient stratification

Prof. Olivier Bernard CREATIS Laboratory, University of Lyon, France

CREATIS; CNRS (UMR 5220); INSERM (U1294); INSA Lyon; University of Lyon, France

Resume

	Al methods in cardiac image a	analysis
Acquisition	Image quantification	Population representation
Ultrafast cardiac imaging	Segmentation Tissue motion estimation Blood flow estimation Uncertainty modeling	Heterogenous data integration
Convolutional NN Realistic simulations		Transformers
	Convolutional NN Variational Auto-Encoders Physics informed NN Diffusion networks	Etiology classification Hypertension characterization
Robust estimation of	of existing / new biomarkers	

Medical context

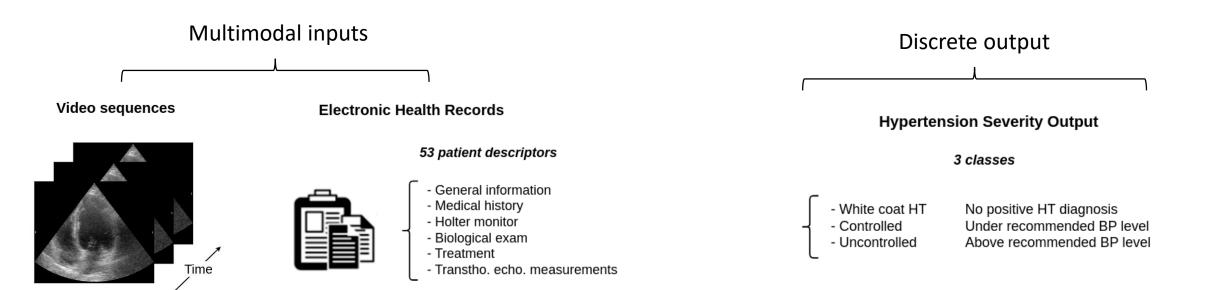
Objective ✓ Arterial hypertension characterization

Dataset

- ✓ 239 patients from a French hospital
- ✓ 53 patient descriptors from HER
- ✓ Apical 2 & 4 chamber views per patients

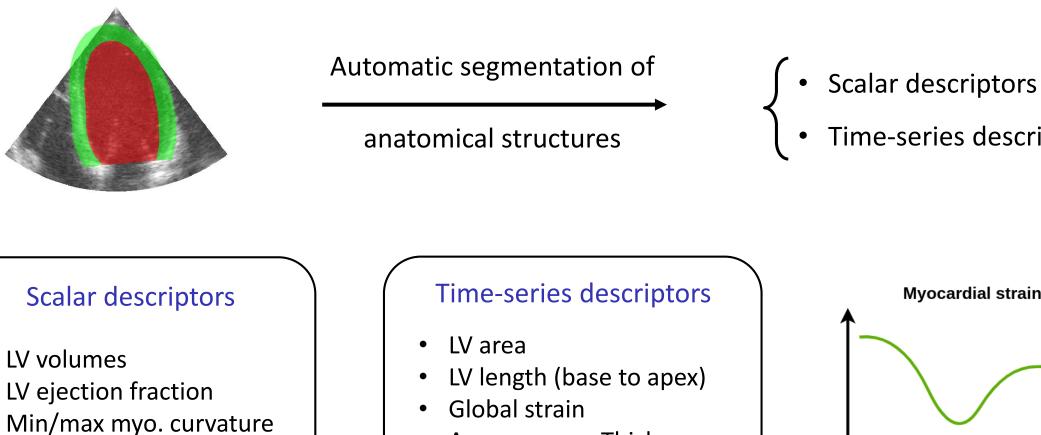
Method

Fusion of heterogeneous data using transformers

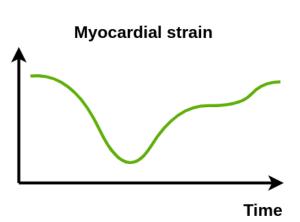


Extraction of robust Al-based image from echo. sequences

Quantification of clinical indices to diagnose cardiac pathologies



Average myo. Thickness



Time-series descriptors

Segmentation of echocardiographic images

[Leclerc et al., IEEE TMI 2019]

Challenges

2D Public Echocardiographic Datasets										
	Nb.	Ground truth				Views		Characteristics		
Name	Year	Subjects	LV _{endo}	LV _{epi}	LA	Full cardiac cycle	A2C	A4C	Multi- Center	Multi- Vendor
CAMUS	2019	500	✓	✓	✓	×	✓	✓	×	×
EchoNet	2019	10,036	✓	×	×	×	×	✓	×	-
HMC-QU	2021	292	✓	✓	×	×	✓	✓	×	✓
TED	2022	98	✓	✓	×	✓	×	✓	×	×

- 1. Precise and accurate 2D segmentation
 - ✓ Intra-observer variability
- 2. Frame-by-frame temporal consistency
- 3. Generalization ability across datasets

× ×

Limited by currently available public datasets!

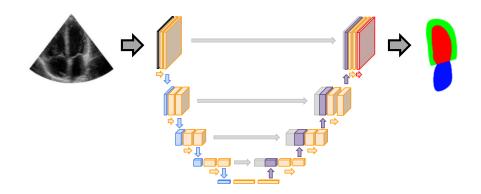
Static image segmentation accuracy

4	

(CS:CAMUS)

		Di	ce	Hausdorff (mm) \downarrow		
Methods	Train/test	ED	ES	ED	ES	
Intra-obs.		.945	.930	4.6	4.5	
2D nnU-Net CLAS GUDU	$\rm CS/CS$.952 .947 .946	.935 .929 .929	4.3 4.6 4.7	4.2 4.6 4.7	

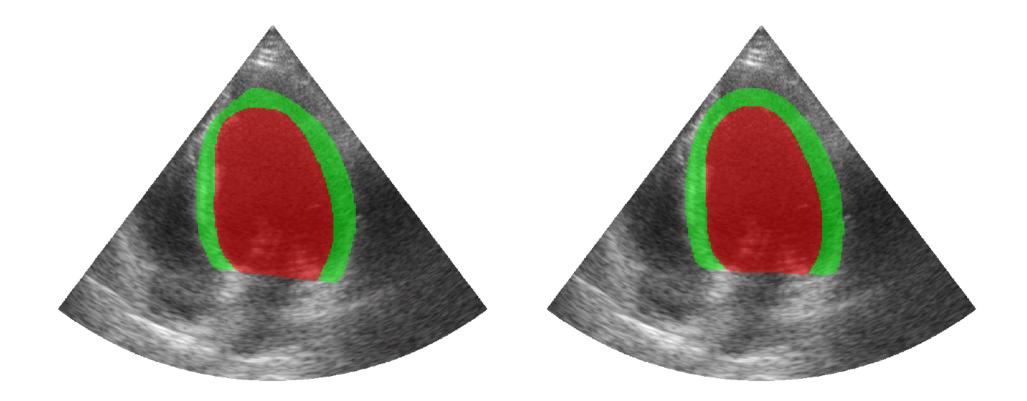
2D nnU-Net architecture



Several engineering tricks

- Resampling to a same resolution
- Automatic architecture choices
- Data augmentation strategies Patch approach to preserve resolution

Need for temporal consistency



Segmentation with a 2D nnU-Net

Manual annotation

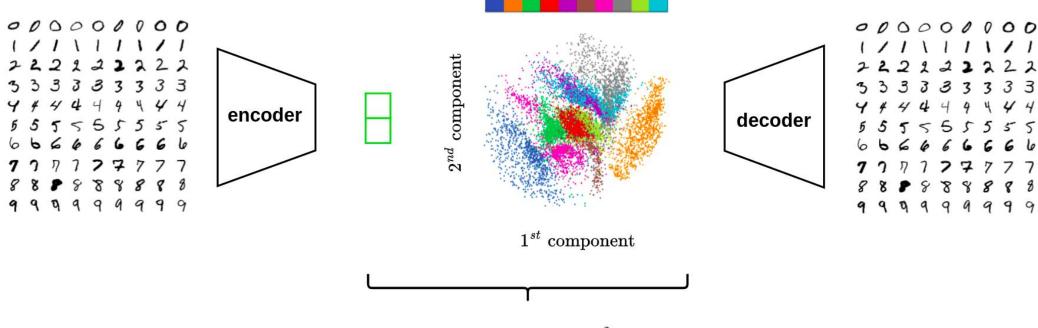
How to guarantee temporal consistency ?

[Painchaud et al., IEEE TMI 2020] [Painchaud et al., IEEE TMI 2022]

Variational Auto Encoders

Efficient representation of data through a latent space

- ✓ Local continuity
- ✓ Global completeness



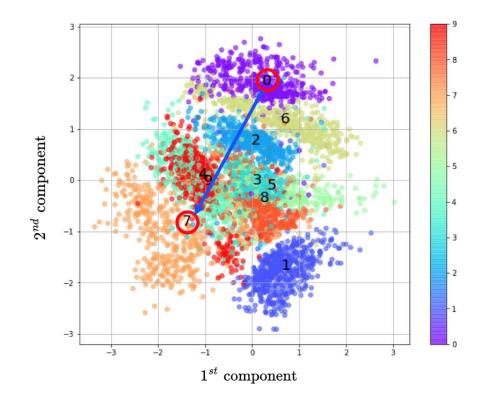
0123456789

Latent space $z_i \in \mathbb{R}^2$

Variational Auto Encoders

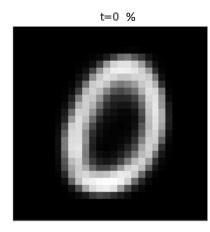
Efficient representation of data through a latent space

- ✓ Local continuity
- ✓ Global completeness



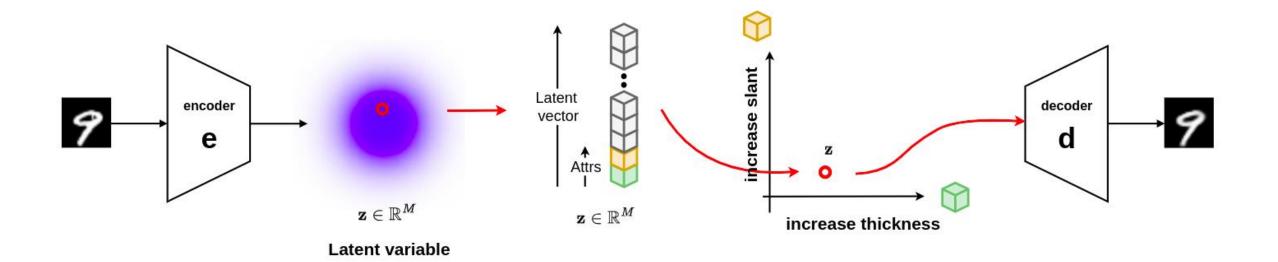
Linear interpolation in the latent space

$$t\cdot z_0+(1-t)\cdot z_7, \qquad 0\leq t\leq 1$$

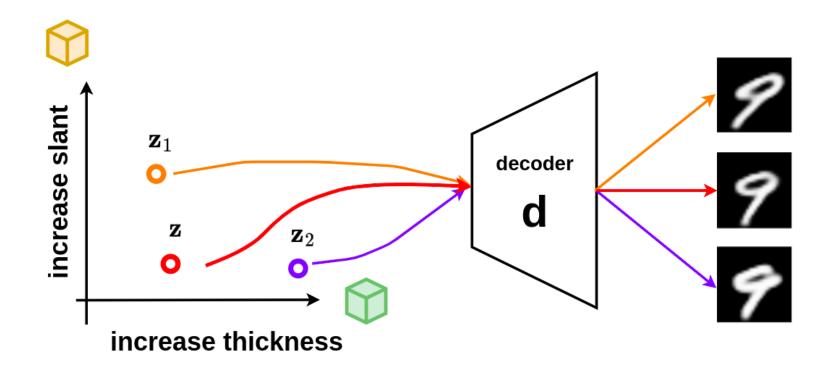


Generation of a structured latent space

- ✓ Specific continuous-valued attributes forced to be encoded along specific dimensions
- ✓ Loss = VAE loss + Attribute Regularization Loss

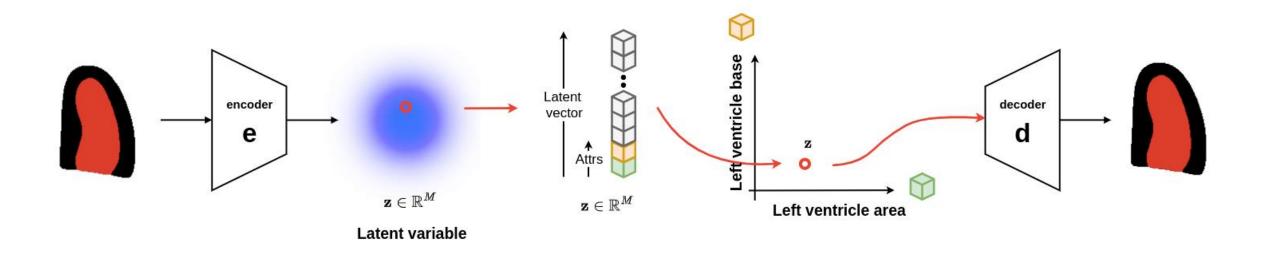


Sampling of the structured latent space

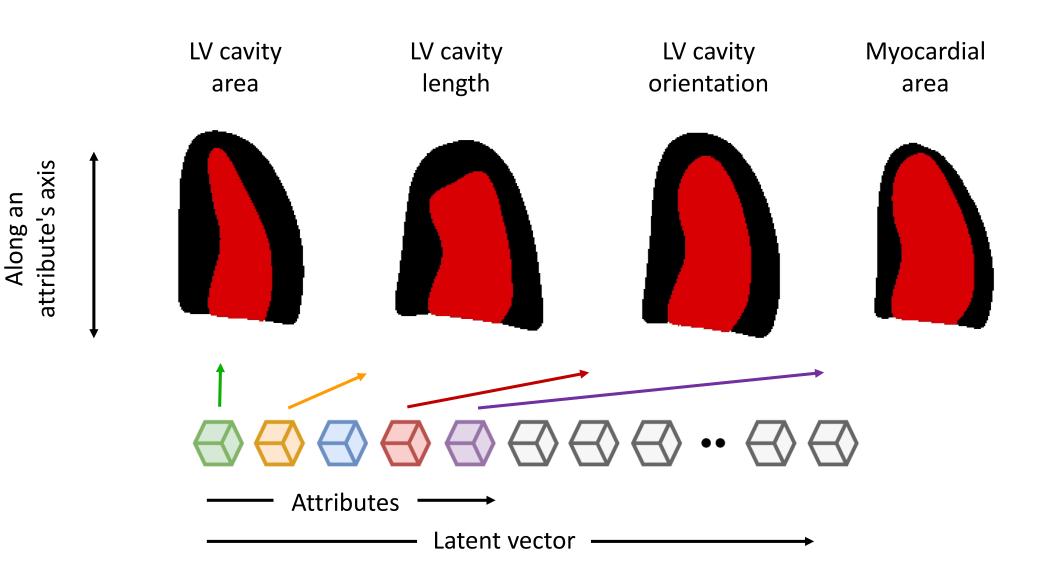


Generation of structured latent space according to specific attributes

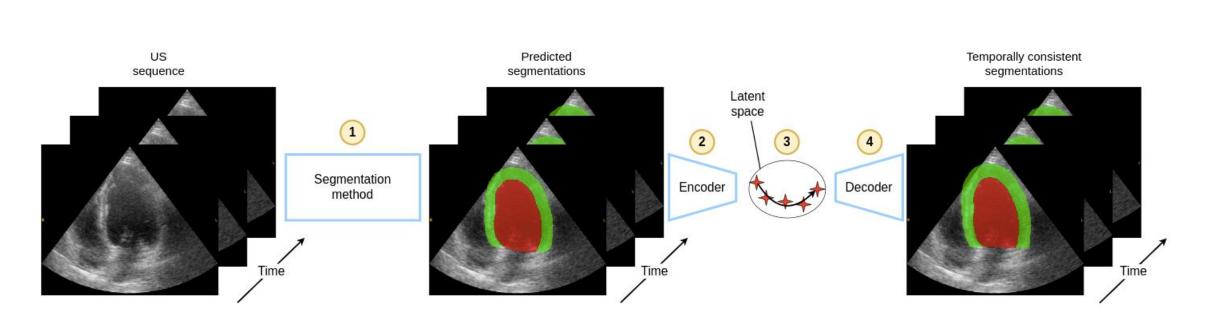
- ✓ Left ventricle (LV) cavity: area, length, basal width, orientation
- Myocardial area
- ✓ Epicardial center



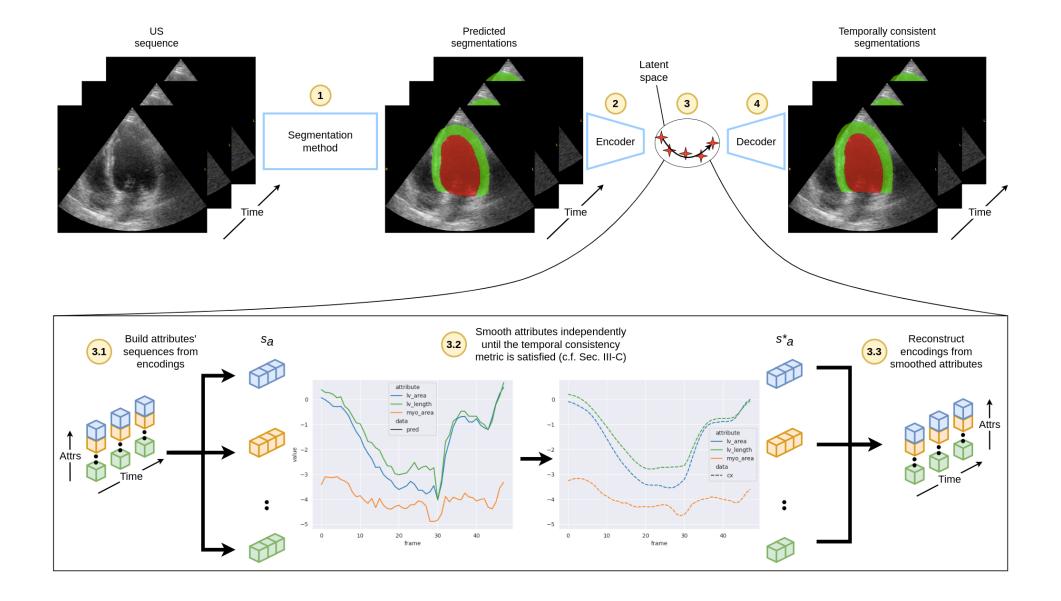
Description of the cardiac shapes

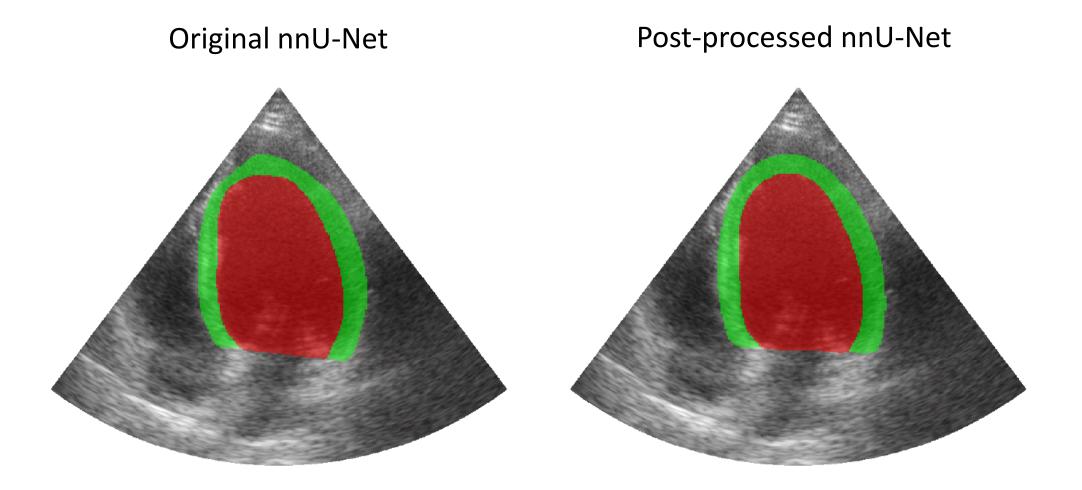


Proposed temporal pipeline



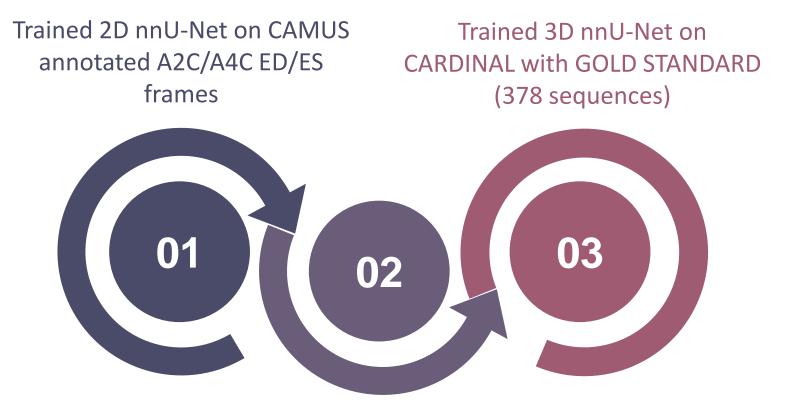
Proposed temporal pipeline



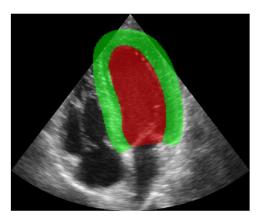


Segmentation of echocardiographic images with temporal consistency

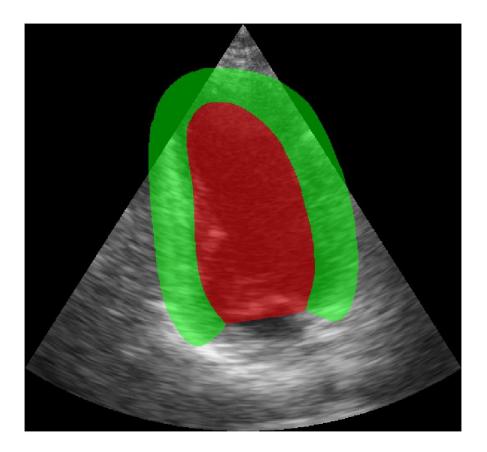
[Ling et al., FIMH 2023]



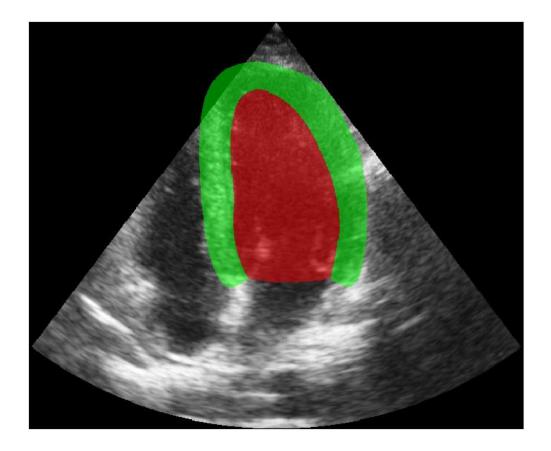
Applied trained models on CARDINAL and postprocessed predictions using Painchaud et al. model to correct temporal inconsistency -> GOLD STANDARD



3D nnU-Net prediction on CAMUS



3D nnU-Net prediction on CARDINAL

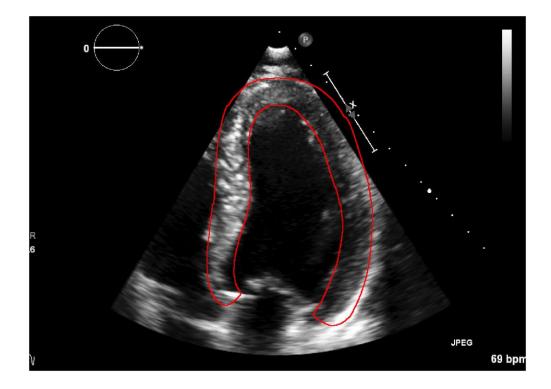


Visualization – GE vs Philips

CAMUS annotator (CAMUS)



3D nnU-Net prediction



Vendor 2

Vendor 1

On the continuous stratification of patient with hypertension

[Painchaud et al., arxiv 2024]

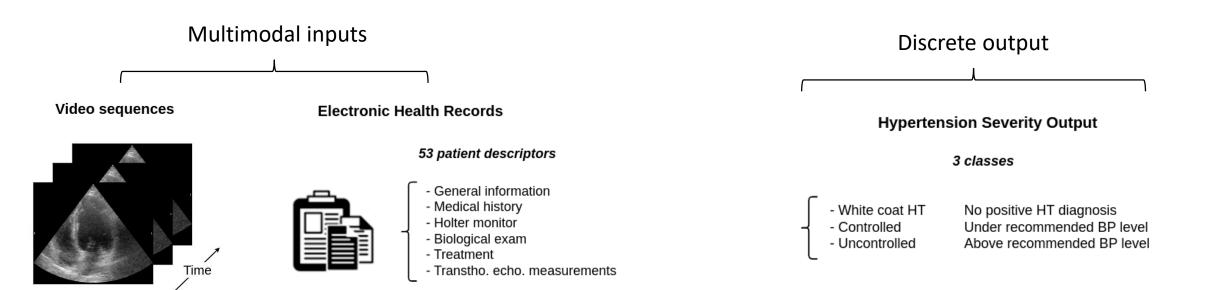
Objective ✓ Arterial hypertension characterization

Dataset

- ✓ 239 patients from a French hospital
- ✓ 53 patient descriptors from HER
- ✓ Apical 2 & 4 chamber views per patients

Method

Fusion of heterogeneous data using transformers



Fusion of heterogeneous data

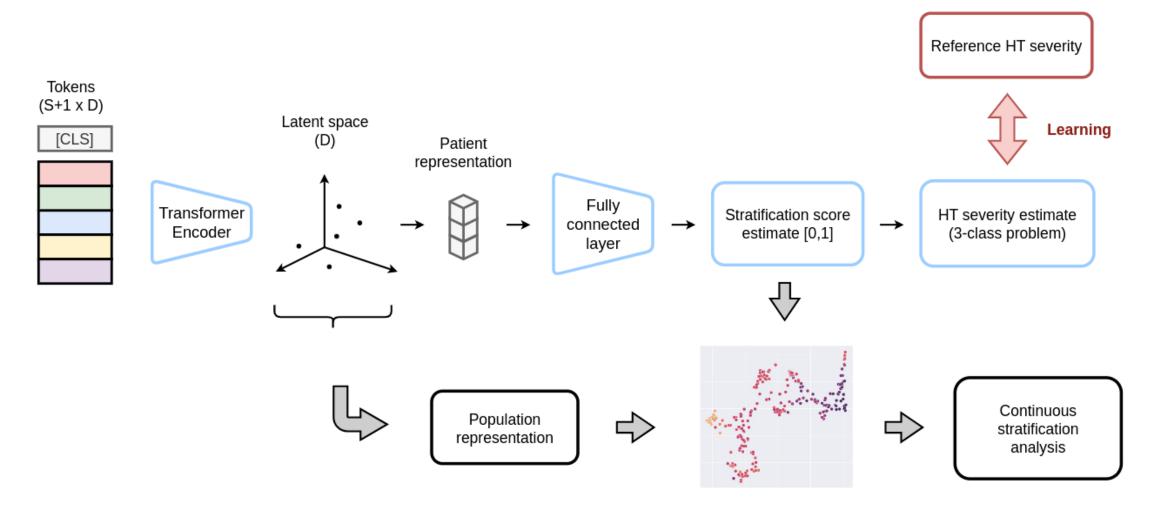
Method

Transformer paradigm Multimodal information fusion

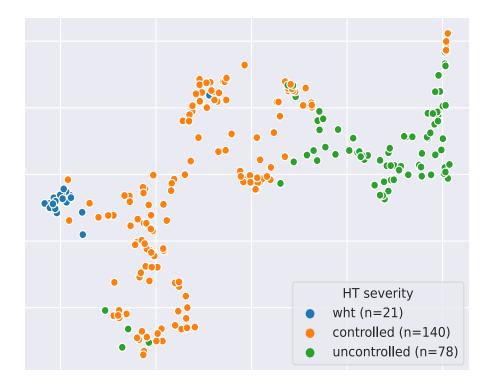
US Gold standard Tokens segmentations sequence (S x D) Tokens Time-series (S+1 x D) Segmentation Image tokenizer method attributes **A** [CLS] Transformer Time Time encoder \bigcirc Latent space \bigcirc Feature tokenizer Clinical : attributes $\widehat{}$ Health records

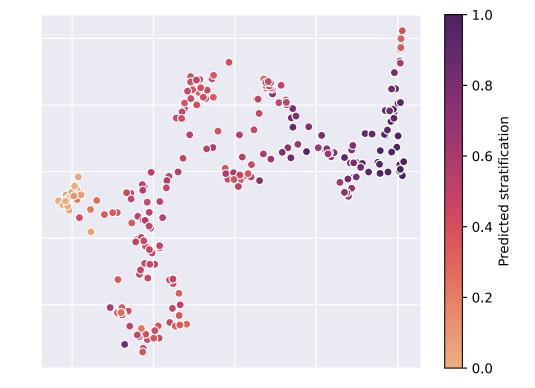
Fusion of heterogeneous data

Method ✓ Stratification estimation



Target labels versus continuous stratification



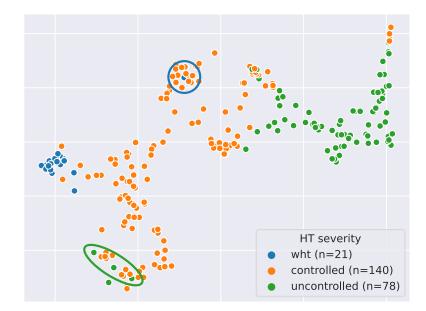


Population representation: coloration according to HT severity Population representation: coloration according to predicted stratification Results

Automatic classification of HT severity (3-class problem)
Training on 191 patients, testing on 48 patients
Mean ± standard deviation over 10 trainings

Transformer	tabular+time-series
Accuracy (%)	83.3 ± 2.8

Classification accuracy using the 64 tabular descriptors + 14 time-series descriptors



Population representation: coloration according to HT severity Results

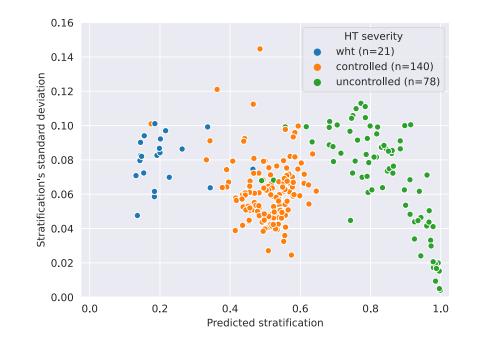
The more data, the better !Unusual results

		Input descriptors	Nb of descriptors	Accuracy (%)
		tab-13	13	71.3 ± 3.8
More data		tab-13+time-series	27	74.4 ± 3.8
		records	30	80.6 ± 4.2
	イケ	tabular	64	$83.5~\pm~4.8$
	V	tabular+time-series	78	83.3 ± 2.8

Training on 191 patients, testing on 48 patients, average values from 10 different experiments **Population representation**

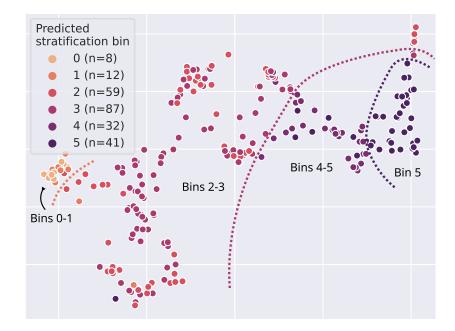
Results

✓ Stable prediction of the stratification score [0,1]
→ Average variability of 0.065 over 10 trainings



Computation of the variability of the stratification estimation over 10 different trainings Results

 Continuous stratification enables a more detailed study of phenogroups



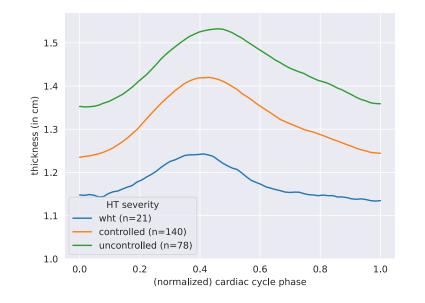
Discretization of the continuous stratification according to bins

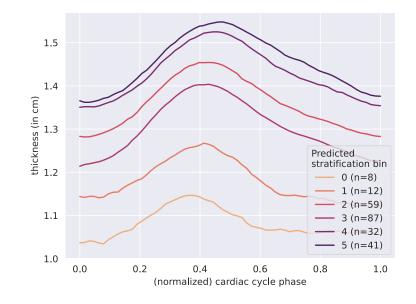
Phenogroups analysis

Results

✓ Study of patterns in time-series descriptors

- Basal Septal Thickness (BST)
 - \rightarrow Thicker myocardium for HT patients
 - \rightarrow Shift in peak thickness





Patient groups according to the severity score provided by a cardiologist

Patient groups according to the stratification bins

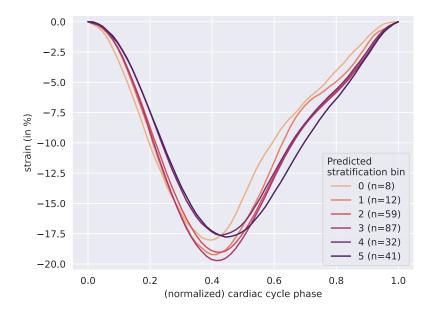
Phenogroups analysis

Results

- ✓ Study of patterns in time-series descriptors
- ✓ Global Longitudinal Strain (GLS)
 - \rightarrow Decrease in peak GLS
 - \rightarrow Altered post-systolic relaxation



Patient groups according to the severity score provided by a cardiologist



Patient groups according to the stratification bins

Conclusions & Perspectives

- ✓ AI-based framework enables
 - Automatic and robust quantification of several clinical indices
 - Efficient fusion of heterogenous data
- ✓ In this pilot study, we investigate
 - The continuous stratification of patients with hypertension
 - The stability and reproducibility of the results
 - The additive value of continuous stratification representation
- ✓ Perspectives
 - Validation on larger dataset
 - Perform a more clinical analysis
 - Deploy an explainable AI framework for better understanding

Thank you !

Hang Jung Ling

Nathan Painchaud

Nicolas Duchateau

Pierre-Marc Jodoin