Publications

Here is a list of my recent publications. You can find the complete list of my articles on
my Google Scholar profile
my HAL profile

Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation

Published in Medical Image Computing and Computer Assisted Intervention -- MICCAI, 2023

We propose explicitly modeling location uncertainty by redefining the segmentation task as contour regression, providing improved performance and interpretability.

Recommended citation: Judge, Thierry (2023). "Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation." Medical Image Computing and Computer Assisted Intervention -- MICCAI. https://hal.science/hal-04243975v1

Ultrafast Cardiac Imaging Using Deep Learning For Speckle-Tracking Echocardiography

Published in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023

We developped a complex-weighted convolutional neural network (CNN) for ultrasound images. We showed that our method allows reconstructing high-quality static images while maintaining the capability of tracking cardiac motion

Recommended citation: Lu, Jingfeng (2023). "Ultrafast Cardiac Imaging Using Deep Learning For Speckle-Tracking Echocardiography." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. https://arxiv.org/abs/2306.14265

Phase unwrapping of color Doppler echocardiography using deep learning

Published in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023

We developed an unfolded primal-dual network to unwrap (dealias) color Doppler echocardiographic images and compared its effectiveness against two state-of-the-art segmentation approaches based on nnU-Net and transformer models.

Recommended citation: Ling, Hang Jung (2023). "Phase unwrapping of color Doppler echocardiography using deep learning." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 70(8). https://hal.science/hal-04142824v2

Echocardiography Segmentation With Enforced Temporal Consistency

Published in IEEE Transactions on Medical Imaging, 2022

We propose a framework to learn the 2D+time apical long-axis cardiac shape such that the segmented sequences can benefit from temporal and anatomical consistency constraints.

Recommended citation: Painchaud, Nathan (2022). "Echocardiography Segmentation With Enforced Temporal Consistency." IEEE Transactions on Medical Imaging. 41(10). https://hal.science/hal-03672999

CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation

Published in Medical Image Computing and Computer Assisted Intervention -- MICCAI, 2022

We propose a method called CRISP for uncertainty prediction of image segmentation. CRISP implements a contrastive method to learn a joint latent space which encodes a distribution of valid segmentations and their corresponding images.

Recommended citation: Judge, Thierry (2022). "CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation." Medical Image Computing and Computer Assisted Intervention -- MICCAI. https://hal.science/hal-04215854

Motion Estimation by Deep Learning in 2D Echocardiography: Synthetic Dataset and Validation

Published in IEEE Transactions on Medical Imaging, 2022

We propose a novel deep learning solution for motion estimation in echocardiography. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences.

Recommended citation: Evain, Ewan (2022). "Motion Estimation by Deep Learning in 2D Echocardiography: Synthetic Dataset and Validation." IEEE Transactions on Medical Imaging. 41(8). https://hal.science/hal-03603014

Deep Learning vs manual techniques for assessing left ventricular ejection fraction in 2D echocardiography: validation against CMR

Published in medRxiv, 2022

We evaluate the accuracy and reproducibility of 2D echocardiography left ventricular volumes and ejection fraction estimates by Deep Learning versus manual contouring and against CMR.

Recommended citation: Saloux, Eric (2022). "Deep Learning vs manual techniques for assessing left ventricular ejection fraction in 2D echocardiography: validation against CMR." medRxiv. https://www.medrxiv.org/content/10.1101/2022.07.26.22278059v1

A Pipeline for the Generation of Synthetic Cardiac Color Doppler

Published in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022

We present a numerical framework for generating clinical-like Color Doppler imaging. Synthetic blood vector fields were obtained from a patient-specific computational fluid dynamics CFD model.

Recommended citation: Sun, Yunyun (2022). "A Pipeline for the Generation of Synthetic Cardiac Color Doppler." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 69(3). https://cnrs.hal.science/hal-03538666

CMRSegTools: An open-source software enabling reproducible research in segmentation of acute myocardial infarct in CMR images

Published in Plos one, 2022

This paper introduces CMRSegTools: an open-source application software designed for the segmentation and quantification of myocardial infarct lesion enabling full access to state-of-the-art segmentation methods and parameters, easy integration of new algorithms and standardised results sharing.

Recommended citation: Romero, William (2022). "CMRSegTools: An open-source software enabling reproducible research in segmentation of acute myocardial infarct in CMR images." Plos one. 17(9). https://hal.science/hal-04215855