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What is the purpose of diffusion models?

P Best current methods for synthetic image generation
» Allows generating images in a conditioned form
» Many software solutions, such as Midjourney, DALL-E

/An Asian girl in ancient coarse Iinen\

clothes rides a giant panda and
carries a wooden cage. A chubby
little girl with two buns walks on
the snow. High-precision clothing
texture, real tactile skin, foggy
white tone, low saturation, retro
film texture, tranquil atmosphere,
minimalism, long-range view,

\ telephoto lens /




What is the purpose of diffusion models?

P Best current methods for synthetic image generation
» Allows generating images in a conditioned form
» Many software solutions, such as Midjourney, DALL-E

/A digital artwork depicting the\

Buddha's head, intricately designed
with green trees growing from it
and vines surrounding its face. The
background is an enchanted forest
filled with ancient ruins, creating a
mystical atmosphere. In front of the
Buddha's head lies a tranquil river
that reflects his serene expression.
This scene embodies peace amidst
chaos in nature




What is the purpose of diffusion models?

» Recent extensions for video synthesis

https://lumiere-video.github.io/#section image to video

Text-to-Video

* Hover over the video to see the input prompt.



https://lumiere-video.github.io/#section_image_to_video

What is the purpose of diffusion models?

P Recent extensions for video synthesis

https://lumiere-video.github.io/#section image to video

Image-to-Video

* Hover over the video to see the input image and prompt.



https://lumiere-video.github.io/#section_image_to_video

What is the purpose of diffusion models?

» Family of diffusion networks

Diffusion models

Score-based
methods

Normalizing flow

methods




The denoising diffusion
probabilistic models

DDPM

All the mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html



https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

DDPM

» Key characteristics

=» Belongs to the family of generative models (like VAESs)

3 K a
o)

Generator

G(z)

Encoder

VAE: maximize X
24(2[x)

variational lower bound

Discriminator

GAN: Adversarial / X
D(x)

training

Diffusion models:- X0 X1 Xo
Gradually add Gaussian =iz jeee e o SEoEEERas
noise and then reverse

=>» Based on the concept of a Markov chain

Mathematical model used to describe a system that evolves randomly between
different states, following certain probability rules




DDPM

» Key characteristics

=» Define a Markov chain of diffusion steps to slowly add random noise to the
data

=>» The model then learns to reverse the diffusion process to construct data
samples from the noise

Forward process
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Mathematical tools used

» Bayes’ theorem
Q(mt—l | $t) Q(mt)

o) = )
o gz | 2¢1) g2 1)
Q(xt—l | mt) —
Q(ﬂit)
» Marginal theorem
q(mﬂa Ly amT) - Q(xﬁzT)

g(zo) = /Q(ﬂ?o,ﬂ?h“',wz’) dz; --- dzp

q(zo) = fQ(-’Eo:T) dzy.p

» Theorem of conditional probabilities

q(zi_1,%¢) = (s | 4—1)q(z4-1)

q(ml:T | 3)0) — Q(wT | mO:T—l)Q(mT—l | wU:T—2) 2o C Q(-’El | :E[))
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Property of Markov chains

The probability of each event depends only on the state reached
during the previous event

» Theorem of conditional probabilities

Q(iﬂT \ 930:T—1) = Q(CBT \ «’ET—l)

T

q(z1r | z0) = H q(z: | ©1-1)

t=1
» Bayes’ theorem

Q(«"Jt—l \ mtaﬂi‘(})Q(«"Jt | -’L‘(})
q(zi—1 | zo)

gz | xi1) = gz | 2421, 20) =

» Joint distribution

po(zo.r) = po(xT) | | Po(i1 | 2¢)

et
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DDPM

Forward diffusion process
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Forward diffusion process

4 )

A procedure in which a small amount of Gaussian noise is added to the
initial sample xg, producing a sequence of noisy samples x4, -+, xr

- J

(l‘t | Ty— 1

éo - Q@ —@ - —@ @,

zo ~ q(Xo) . . . zp ~ N (0,1)

» x, is a sample drawn from a real data distribution xy~q(X,)

» q(x;|x;—1) models the probability of having the state x; given the state x;_;
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Forward diffusion process

P The prediction at step t depends only on the state at step t — 1, which
gradually adds Gaussian noise to the data x

» The complete process is modeled by :  q(z1.7 | o) = HQ(ﬂ?t | @)

P The conditional probability can be effectively modeled by

a(@:|2) =N (VI Bizis, A1)

S,

e . 3 B o




Forward diffusion process

» How to define the variance f; ?

-> {,Bt c (0, 1) ;f:l sequence of linearly increasing constants

2> (3, = clip (1 — _at ,0.999) sequence of cosine-type constants
a1
f(2) Lts o)
T T
with oy = —— and t) = cos T . —
() 1) ( 1+s 2 )
=> In this case

if B;=0, then gq(z; |z 1)=m¢1
if B, =1, then g¢(x;|z;_1)=N(0,I)
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Forward diffusion process

» Conditional probability: important relation

=>» Using the reparameterization trick

gz |2e1) =N (\/ 1—Bixs 1, Py I)
Ty = /11— Pzt 1+ \/zB_tEt—l

=» One can demonstrate the following relation

mt:\/&tm0+ 1—C_l€tEt

with

with o =1 —,Bt

ap = Hi::l O

e1=N (01 I)
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Forward diffusion process

» To summarize

E

q(z; | zo) = N (V& zo, (1 — &) I)

@l o
% o
. ﬂ ‘ ’ ﬁ o ﬁ ’ ‘
o )
o o

q(zt | Te1) V Bt xi-1, Bt )
zg ~ q(Xo) zp ~ N (0,1)

if B, =0, then gq(z; |z 1)=21
if B, =1, then gq(x;|zi(1)=N(0,I)
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DDPM

Reverse process
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Reverse process

g(z¢ | ®i—1) is known

Q(-’Bt 1 | -’Bt is unknown
zo ~ q(Xp)

» Thanks to Bayes' theorem

Q(-I't | $t—1) Q(fﬂt—l)
Q(-’Bt)

Q'(T't—l | -Tt) —

» Since q(x;) is unknown, q(x;_1|x;) is intractable

. ﬁ ‘ ‘ ﬁ o ﬁ
v
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Reverse process

q(z¢ | -’Bt—l) is known

q(z41 | @) is unknown
. po (xi—1 | ) isthe = o
approximation
» Gaussian assumption po(zi—1 | ) = N (po(xs,t), Zg(xs, 1))

» Modeling the entire reverse process

20



Reverse process

» To summarize

SonRPAERAeAA

EEa@sEEsaE Forward process

EREAARELER R
HeZRACBRTER >
EFBEADEE YD

HEARARRLER

PACSAR sHE268

EFPUEESRABM $\\~\§§-_¥Rmmmemmmwg_—___,—,,/
AYBALNASEE

AaraappRna

Latent space
Target distribution i

Sampling distribution

Q(zt | Ty 1) is known

m 0l o
° . ‘ ‘ oﬁo
cee — —— > )
o oo
[ x/ o %

q(z1 | xt) is unknown
i Po (41 | z¢) is the zr ~ N (0,I)
po (Xo) is the approximation

approximation

=» Model to learn =>» Entire reverse process




DDPM

Learning strategy

22



Learning strategy

» Minimizing the cross-entropy between q(x,) and pg(x,) results in the
two distributions being as close as possible

» Rewriting this expression using the marginal theorem

H(qapf?) — _Eﬂ?[}"vq

— _Eﬂ?(}“q

_ESBGNG‘

:log ( / po(zo.7) dml::r)]

_log (/ g(z17 | wo)q(zfl(:]ﬂ;o) dm)]

P@(%:T)

_Og( rea(mneriz) !q(ﬂﬁ:’r | :1?0))”
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Learning strategy

» Jensen's inequality

¢(E[X]) < E[s(X)]
Pe(«"f»'o:T)

2> H 4, Do < _E:cw E:cl. ~q(xi.7|T [log(
( ) o~q 1~q(x1.7|T0) Q(ml:T | 390)

< —E:m}:TNQ(wo:T) |:10g( = (mO:T) ):|

Q($1:T | 1130)

q(z1.7 | z0)
= Lozg.p~q(zo.7) log( pg(-’B(}:T) )]

< Lyus

» Variational upper bound

)
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Learning strategy

Since H(q, pg) is positive, minimizing Ly is equivalent to minimizing H(q, pg)

> M|n|m|2|ng LVUB

Lvs —E, ., [log( o L)) +Zlog( P L2020 oy :m)]

po(zT) po(zi-1 | 1)
i@
= Dxy (9(z1 | 20) || PO(CUT )< ZDKL q(@i-1 | T4, z0) || Po(@i-1 | 1)) — log(pe(zo | 1))
ET Li 1 Lo

The derivation of this expression is described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html
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Learning strategy

» Minimizing Ly yp

=» Remark n°1: Since the sequence {f}:¢[1,r] is chosen in advance, q(xr|x,) is

deterministic, and L is a constant term that will be ignored in the
minimization process

=» Remark n°2: L, can be modeled by a specific decoder, or omitted for the sake
of simplicity

=» Remark n°3: Using the reparameterization trick, g (x;_1|x¢, X¢) can be
reformulated as

[ q(zi-1 | T4, m0) = N (fie(2¢, o), Be - I) J

ith [ P R el I,
WiI Xio L — XrTy — ——€
Hi\ Tty T \/Of—t ¢ \/1——c_rtt
~ l—a; 4 _
bi=7—FF  a=llau  a=1-8
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Learning strategy

» Minimizing Ly yp

=» Minimizing Ly ;5 thus corresponds to minimizing
D (q(xp—qlx, x0) || po(xe—1]x)) for all time steps t

q(zs_1 | T4y o) = N (fit (s, 20), Bt - I)

pe(ib't—1 | $t) = N(He(mt:t):zﬂ(-’ftat))

with

=>» We want to make the two Gaussian distributions q(x;_1|x;, xo) and
po(xt_1|x¢) as close as possible

=> For the sake of simplicity, we choose Xg(z¢,t) = 0 I = Bt I

-

The idea is to focus on the means of the two distributions and train a neural

L 1 1-
network pg to predict i, = — (xt —— )

€
V& Ji—a t

~
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Learning strategy

(1 — O!t)z

Liq = EIBONQ,GNN [ _ 9 ||€t - Eg(ﬂit,t)Ilz]
200(1 — au) By

=>» This expression can be simplified by ignoring the weighting term, which
gives the final loss function to minimize as follows :

28



DDPM

Architecture

29



Architecture

» Key points

=>» The goal is to estimate the conditional probability pg (x:—1|x¢)

=>» Although the key modeling of diffusion models is the Markov chain, it is
possible to directly express x; as a function of x,

eV ViEe | {0 e O
a = szlak

=» The only unknown is the noise €4 (x;, t), which we will estimate using a neural
network by minimizing the following loss function

30



Architecture

31



Architecture

=>» Integration of t is necessary because the added noise varies over time

L=

32 132} 32 32 32 Predicted noise Ground truth noise
=’.>[|!=¢_| ”‘:}”@U Go(ict,t) etNN(Ovl)
128 i128; 256 64 64
Ground truth noise ! g «3 £

€4~ N(O, I)

! 16 16 (16 1616 16

=141

? i 128 256 (256! 512 128 128 |
: M ' Sasnast 1 :
: : ' & £ ! :
! : 1 8 8 8 8 8 ' : Attention layer
. § § P ==l =] |
Input image e - ; ' 256 256 256 512 236 ! :
o : Positional : H '
[ == @ © 9 ® ¢
: Set of matrices of : H
te {1, 1000}----'--- dimensions RI*P b ecaeedemmmmm et e e Comemaaaad
where D is the
number of the
feature maps at the
targeted level

.

32



Architecture

=>» Attention layer

Attention layer

token ' ' Q KT
¢ € RUX)XD :
=p : Q € RUWK
s : AV
e '@ """"" Self-Attention matrix _@
H (HxW)x (HxW) H
Feature map l K e RUxWxE A€R :
Fiy € REW)xD : ‘ Head
; @ : H, € REXWIV
Ve ]R(HxW)xV
T
Self attention part

CONCATENATION

Output map

Fwt € ]R(HXW)XD

Linear projection
Simple matrix
multiplication of

- dimensions

R(EV)xD
Concatenated heads
H,, € RHXW)xkV

= L J
T

Multi-head part
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Architecture

» In summary

=» Training

Algorithm 1 Training

6:

1
2:
3:
4:
5

: repeat

xo ~ q(xo)
t ~ Uniform({1,...,7T})
e ~ N(0,I)
Take gradient descent step on
Vo ||e — eo(v/@exo + VI — aze, t)||”

until converged

=» Inference / generation of a new synthetic image

Algorithm 2 Sampling

ol I

x7 ~ N(0,I)
fort="TT;...;1do
z~N(0,I)ift > 1,elsez=0

X1 = \/—1(;_: (xt - \}——%P:eo(xt,t)) + 012
end for
return xg
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Practical application

Latent diffusion models

35



Latent diffusion model (LDM)

» Projection of images into a dedicated space before processing

=» Using a VAE as input/output to the DDPM to reduce the complexity of the
processed images and memory footprint

=>» Introducing a perceptual loss function to improve the quality of the
reconstructed images

: i Multiply i
___________ _.| Normalize |_,| |---_]|-] 5
F F || Subtract ! L2 norm 1-| Avg ]
| |_ ______ _| |_ ____________ ____.[._. Spatial Average |, doy
| -1 |- > e »{]

x and x, are two image patches given as input
F is a pre-trainer network, such as VGG50
36



Latent diffusion model (LDM)

» Image projection in a dedicated area before processing

=» Implementation of an adversarial approach

Discriminator

t|r

f

f

f

o

r f r

f

f

r

r

r

Real / Fake

// -

Decoder

G

e
B

/>

=» Final loss function

[ L= E'r'econs + )Bl ['KLD + 52 Epe'r'ceptual + 53 Eadversa'mial ]

37



Latent diffusion model (LDM)

» VAE is learned independently of DDPM and its architecture is fixed

» Minimization of the following loss function

[ Lipm = Emqu,CNN,tN[]-:T] [”‘Et - Eo(xt’t)llz] ]

» LDM architecture

Latent Space

Diffusion Process

Denoising U-Net €y

Pixel Space

éonditionina

Eemantiq
Map '
Text

Repres
entations

4

denoising step crossattention

switch  skip connection concat
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Latent diffusion model (LDM)

» Properties

z-shape 64 X 64 %3
Diffusion steps 1000
Noise scheduler linear

Number of parameters 274 Million

Channels 224

Channel multiplier 1,2,3,4
Attention resolutions 32,16,8
Number of head 1
Batch size 48
Iterations 410 k
Learning rate 9.6 e
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Latent diffusion model (LDM)

» Random generation of synthetic images without conditioning learned from
the CelebA-HQ database

Random samples on the CelebA-HQ dataset
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Latent diffusion model (LDM)

» Random generation of synthetic images with conditioning on the class
learned from the ImageNet database

Random class conditional samples on the ImageNet dataset
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Latent diffusion model (LDM)

» Random generation of synthetic images with conditioning on masks
learned from the Flickr-landscapes database
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Latent diffusion model (LDM)

» Random generation of synthetic images with conditioning on text learned
from LAION-400M database

=» Using the BERT tokenizer
=» This model has over 1.45 billion parameters!

'A painting of the last supper by Picasso.’
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That’s all folks
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