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Generative AI for imaging
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Generative AI for medical imaging

Generative AI
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Output
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► Key challenges

Generative AI for medical imaging

Conditioning Multimodality
Generative 

ability

An Asian girl in ancient 
rides a giant panda
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Generative AI for medical imaging

Generative ability

Learning Sampling



6

Generative AI for medical imaging

Conditioning

Class 1

Class 2

Class 3
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Generative AI for medical imaging

Multimodality

An Asian girl in ancient coarse linen 
clothes rides a giant panda and 

carries a wooden cage. A chubby 
little girl with two buns walks on 
the snow. High-precision clothing 

texture, real tactile skin, foggy 
white tone, low saturation, retro 

film texture, tranquil atmosphere, 
minimalism, long-range view, 

telephoto lens
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Generative AI for medical imaging

Multimodality

https://lumiere-video.github.io/#section_image_to_video

https://lumiere-video.github.io/#section_image_to_video
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Generative AI for medical imaging

Multimodality

https://lumiere-video.github.io/#section_image_to_video

https://lumiere-video.github.io/#section_image_to_video
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► Family of networks

Diffusion 
models

VAE

GAN

sampling

sampling

sampling

Generative AI for medical imaging
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Variational auto-encoders
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How to learn a complex distribution ?

► Projection of the data into a lower dimensional space called latent space

► Interest: generating a more compact and interpretable representation
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How to learn a complex distribution ?

► How to learn a relevant latent representation ?
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Auto-encoder framework

► Standard encoder / decoder architecture

► Deep learning loss function
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Auto-encoder weaknesses

► Illustration from MNIST dataset

▪ (train,test) = (60 000, 10 000)

▪ Input image size: 32x32   / latent space 𝐾=16  (compression factor around 64)
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Auto-encoder weaknesses

► Needs to better control the structure of the latent space

Lack of global 
completeness

Lack of local 
continuity 
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Auto-encoder weaknesses

► Sampling random latent vector

𝑧1

𝑧3

𝑧4 𝑧2
decoder
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Variation Auto Encoder framework

► Starting point

Intractable distribution Controlled distribution
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Variation Auto Encoder framework

► Creating a mapping between the two distributions

➔ Through Bayesian statistics
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Variation Auto Encoder framework

► Strong assumptions

➔ Latent distribution 𝑝(𝑧) is assumed to be a normal distribution

➔ The likelihood distribution is 𝑝(𝑥|𝑧) assumed to be a Gaussian distribution whose 
parameters need to be learned

➔ The posterior distribution 𝑝(𝑧|𝑥) is intractable and needs to be approximated
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Probabilistic framework

► Approximation of the posterior through variational inference

➔ Statistical approximation technique for complex distributions, here 𝑝 𝑧|𝑥

➔ Definition of a parameterized family of distributions

► e.g., family of Gaussian distributions with parameters 𝜇𝑥 , 𝜎𝑥 modeled by 
functions to be determined

➔ Find the best approximation of the target distribution in this family

➔ The best element of the family minimizes an approximation error measure 
between two distributions

► Kullback-Leibler divergence function is often used



22

Probabilistic framework

► Kullback-Leibler divergence function

➔ Distance measure between two distributions via relative entropy

➔𝐷𝐾𝐿 is a measure that is always positive 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

➔𝐷𝐾𝐿 is a nonsymmetric measure 𝐷𝐾𝐿 𝑝||𝑞 ≠ 𝐷𝐾𝐿 𝑞||𝑝

• For the purple distribution, the 
distance AB is large

• For the green distribution, the 
distance AB is moderate

• The notion of distance differs 
depending on the distributions
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Variation Auto Encoder framework

► Enforce a structured latent space with reduced dimensionalities

➔ Through Bayesian statistics
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Variation Auto Encoder framework

► The prior is modeled through a Gaussian distribution

► The likelihood is modeled through a Gaussian distribution

► The posterior is approximated by an axis-aligned Gaussian distribution
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Variation Auto Encoder framework

► Optimization process

➔ Sample a new data from the original data distribution

➔ Pick a sample 𝑥 that maximize 𝑝 𝑥 , or log(𝑝 𝑥 )

Marginal distribution

Jensen’s inequality

Expectation 
reformulation
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Variation Auto Encoder framework

► Evidence lower bound (ELBO)

➔Maximization of the ELBO

ELBO

Bayes’ formula 
𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

Kullback-Liebler 
divergence 𝐷𝐾𝐿
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Variation Auto Encoder framework

► ELBO maximization

➔ Exploitation of the Gaussian assumption of the likelihood
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Variation Auto Encoder framework

► Optimization process

► Deep learning loss function

➔ 𝑔 ∙ and ℎ(∙) are modeled through an encoder

➔ 𝑓 ∙ is modeled through a decoder



29

Variation Auto Encoder framework

► Interpretation of the loss function

Input image Reconstructed image

Completeness constraint
Continuity constraint

Data attachment term
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Variation Auto Encoder framework

► Reparameterization trick
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Variational framework

► Illustration from MNIST dataset

▪ (train,valid,test) = (50 000,10 000,10 000)

▪ Input image size: 28x28   / latent space 𝐾=16  (compression factor around 50)
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Variational framework

► Generative model with variational framework

Linear interpolation into the latent space

%
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Reinforcement of the generative 
process
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Structuration of the latent space: AR-VAE

► Structuration of latent space based on image attributes

● What is an attribute ?

➔ Measurement performed in image space to characterize a target object

➔ E.g.: handwritten digits (MNIST database)

► Attributes: line thickness, inclination, length, area, ...

➔ Pre-training image attribute measurements used as input data

Tilt Thickness
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Structuration of the latent space: AR-VAE

► Structuration of latent space based on image attributes

● Each attribute are coded according to a specific latent dimension

Data attachment 
term

KL divergence
term

Attribute regularization 
term

Structuring latent space
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Structuration of the latent space: AR-VAE

► Attribute regularization term

● During the learning phase

➔ Computation for each attribute 𝑎 of a distance matrix 𝐷𝑎 ∈ ℝ𝑚×𝑚 from the 𝑚
images 𝑥𝑖 1≤𝑖≤𝑚 present in the current batch

➔ Computation for each attribute 𝑟 of a distance matrix 𝐷𝑟 ∈ ℝ𝑚×𝑚 from the 𝑚
latent vector 𝑧𝑖 1≤𝑖≤𝑚 corresponding to the images in the current batch

➔ Introduction of the following loss term

𝐷𝑎 𝑖, 𝑗 = 𝑎 𝑥𝑖 − 𝑎 𝑥𝑗 with       𝑖, 𝑗 ∈ [0,𝑚)

𝐷𝑟 𝑖, 𝑗 = 𝑧𝑖
𝑟 − 𝑧𝑗

𝑟 with       𝑖, 𝑗 ∈ [0,𝑚)
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Structuration of the latent space: AR-VAE

► Generate a latent space structured according to attributes
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► Generate a latent space structured according to attributes

● Sampling of the structured latent space

Structuration of the latent space: AR-VAE
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► Generate a latent space structured according to attributes

● Sampling of the structured latent space

➔ Specific attributes: surface, length, thickness, inclination, width, height

➔ Each column corresponds to a traverse along a regularized dimension

Surface

Length

Thickness

Tilt Height

Width

Length Tilt Height Length Tilt Height

Surface Thickness Width
Surface Thickness Width

Structuration of the latent space: AR-VAE
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Medical applications
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► Application example: representation of cardiac shapes

● Generation of a latent space structured according to the following attributes

➔ Left ventricular (LV) cavity: surface area, length, basal width, orientation

➔ Myocardial surface

➔ Epicardial wall center

Shape representation
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LV cavity 
area

Myocardial 
area

Length of LV 
cavity

LV cavity 
orientation

Latent vector

Attributes

Shape representation
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► Post-processing to ensure temporal consistency

[Painchaud, IEEE TMI, 2022]

Cardiac segmentation with temporal consistency
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Cardiac segmentation with temporal consistency
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► Some post-processing examples

Original segmentation Post-processed segmentation

Cardiac segmentation with temporal consistency
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► Some post-processing examples

Cardiac segmentation with temporal consistency

Original segmentation Post-processed segmentation
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Hands-on session
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► https://olivier-bernard-creatis.github.io//teaching/

Hands-on session

https://olivier-bernard-creatis.github.io/teaching/
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Diffusion models
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Diffusion models

► Best current methods for synthetic image generation

► Allows generating images in a conditioned form

► Many software solutions, such as Midjourney, DALL-E

An Asian girl in ancient coarse linen 
clothes rides a giant panda and 

carries a wooden cage. A chubby 
little girl with two buns walks on 
the snow. High-precision clothing 

texture, real tactile skin, foggy 
white tone, low saturation, retro 

film texture, tranquil atmosphere, 
minimalism, long-range view, 

telephoto lens
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What is the purpose of diffusion models?

► Family of diffusion networks

Score-based 
methods

Normalizing flow 
methods

Denoising Diffusion 
Probabilistic models
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Intuition behind diffusion models
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Variational Auto-encoders

► Completeness is expressed as a soft constraint !

Input image Reconstructed image

Sampling from the latent space 𝒩 0, 𝐼 does not guarantee to obtain a 
reconstructed image from the target distribution 

➔ and                   should remain close in terms of distributional distance
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Variational Auto-encoders

► Illustration from Mednist dataset

▪ (train,valid,test) = (1491,373,223)

▪ Input image size: 48x48   / latent space 𝐾=432  (compression factor around 5)

Input image
Reconstructed image

t-SNE visualization of the 
latent space using the 
training data as sample 
points
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Variational Auto-encoders

► Linear interpolation between two real images

Linear interpolation in 
the latent space
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Variational Auto-encoders

► Sampling directly from the latent space

𝑧 ∈ ℝ(𝐾) with   𝑧𝑖 ∼ 𝒩(0, 𝐼)

Sampling directly from 
the latent space

A soft constraint on the latent space to remain close to 𝒩 0, 𝐼 is not sufficient to 
build generative models that effectively learn a target distribution 
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The denoising diffusion 
probabilistic models

DDPM

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

All the mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html
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How can a hard constraint be enforced to ensure a direct transformation from the 
latent space (modeled as a Gaussian) to the target distribution?

Basic idea of denoising diffusion model

► Noising process

► Learning of the denoising process
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Noising process (forward diffusion process)

► Modeled as a sequence of normal distributions (Markov chain process)
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Noising process (forward diffusion process)

► Modeled as a sequence of normal distributions (Markov chain process)

► 𝛽𝑡 : variance varying over the iterative process from 0 to 1
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Noising / denoising processes

► Noising process

► Denoising process
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Training procedure

► Choose a random step 𝑡 ∈ 1,⋯ , 𝑇

► Train a U-Net model to predict the noise pattern 𝜀𝜃 to remove from 𝑥𝑡
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Architecture

Standard U-Net with attention layers and position encoding to integrate 
temporal information

➔ Integration of 𝑡 is necessary because the added noise varies over time
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Architecture

➔ Attention layer
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Inference: generation of synthetic data

► Generate a random image 𝑥𝑇~𝒩 0, 𝐼 ∈ ℝ𝑁×𝑀

► At each step from 𝑇 to 0, use the U-Net model to compute

with

U-Net
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Mathematical formalism
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Mathematical formulation

► Useful notations

Complete forward process Complete reverse process

Complete forward 
process

Compact 
reformulation

Markov chain
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Mathematical formulation

► Optimization process

➔Maximization of log 𝑝𝜃 𝑥 /  Minimization of −log(𝑝𝜃 𝑥 )

Marginal distribution

Jensen’s inequality

Expectation 
reformulation
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Mathematical formulation

► Evidence lower bound (ELBO)

➔Minimization of the ELBO

ELBO

No parameter to 
be learned

Very small
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Mathematical formulation

► ELBO minimization

➔ Exploitation of the Gaussian properties of the forward process 
and modeling of the reverse process using Gaussian distribution

➔ Reformulation
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Mathematical formulation

► ELBO minimization

➔ Expressions of means 

➔ Simplifications 
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Practical application

Latent diffusion models
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Latent diffusion model (LDM)

► VAE is learned independently of DDPM and its architecture is fixed

► Efficiently reduce the dimensionality of the input space

► Efficiently initiate the Gaussian diffusion process

► LDM architecture 
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Latent diffusion model (LDM)

► Properties

Parameters LDM – 𝟐𝟓𝟔 × 𝟐𝟓𝟔

z dimensions 𝟔𝟒 × 𝟔𝟒 × 3

Diffusion steps 𝟏𝟎𝟎𝟎

Noise scheduler (𝛽𝑡) linear

Number of parameters 𝟐𝟕𝟒 Million

Channels 𝟐𝟐𝟒

Channel multiplier 𝟏, 𝟐, 𝟑, 𝟒

Levels for attention 𝟐, 𝟑, 𝟒

Number of head 𝟏

Batch size 𝟒𝟖

Iterations 𝟒𝟏𝟎 k

Learning rate 𝟗. 𝟔 𝒆−𝟓
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Latent diffusion model (LDM)

► Random generation of synthetic images without conditioning learned from 
the CelebA-HQ database
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Latent diffusion model (LDM)

► Random generation of synthetic images with conditioning on the class 
learned from the ImageNet database
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Latent diffusion model (LDM)

► Random generation of synthetic images with conditioning on masks 
learned from the Flickr-landscapes database
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Latent diffusion model (LDM)

► Random generation of synthetic images with conditioning on text learned 
from LAION-400M database

➔ Using the BERT tokenizer

➔ This model has over 1.45 billion parameters!
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Medical applications
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Data 
augmentation

Denoising

Anomaly 
detection

Segmentation
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Data 
augmentation

Denoising

Anomaly 
detection

Segmentation
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Diffusion models for data augmentation

► Synthetic dataset generation for brain MR volumes  [Walter et al., MICCAI workshop 2022]

► UK Biobank dataset

► 3D MR volumes (T1w)

► Training: 31,740 patients

► with covariables: age (44 to 82 years), gender (53% women), brain structure volumes

► Quality of synthetic data measured using FID: Fréchet Inception Distribution
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Diffusion models for data augmentation

► VAE

► 3D convolutions

► Latent space dimension: 20 x 28 x 20

► DDPM

► 3D convolutions

► T=1000 time steps

► Conditioning: vector encoding each covariable
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Diffusion models for data augmentation

► Results

► FID: generated from 1,000 samples drawn from 
each of the two distributions to be compared  
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Diffusion models for data augmentation

► Results

► SynthSeg model was used to automatically measure brain volumes from synthetic data

► A 3D CNN trained from the UK biobank was used to automatically predict the age from the 
synthetic data

► Synthetic dataset of 100,000 human brain was generated and made publicly available 
with the conditioning information 

► Promote data sharing with privacy guarantees
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Data 
augmentation

Denoising

Anomaly 
detection

Segmentation
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Diffusion models for data augmentation

► Synthetic dataset generation for brain MR volumes  [El-Allaly et al., Eusipco 2025]

► Set of public datasets (IBSR, OASIS, IXI, Kirby)

► 3D MR volumes (T1w, T2w, FLAIR)

► Training: 40,000 axial MRI slices

► with textual description generated from atlas registration + […]
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Diffusion models for data augmentation

► Synthetic dataset generation for brain MR volumes  [El-Allaly et al., Eusipco 2025]

► Set of public datasets (IBSR, OASIS, IXI, Kirby)

► 3D MR volumes (T1w, T2w, FLAIR)

► Training: 40,000 axial MRI slices

► with textual description generated from atlas registration + metadata +  natural language 
description using template-based text synthesis
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Diffusion models for data augmentation

► Text encoder

► WordPiece tokenizer

► BiomedBERT pre-trained model

► Number of tokens processed : 512

► Token size (text embedding dimension): 768

► VAE

► Pre-trained from 40,000 axial MRI slices

► 2D convolutions

► Input image dimension: 256 x 256 x 1

► Latent space dimension: 64 x 64 x 1

► Training time (GPU 32 GB): 40 hours 
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Diffusion models for data augmentation

► DDPM

► 2D convolutions

► T=1000 time steps

► Conditioning: set of token encoding the text description of size 512 x 768

► Input size: 256 x 256 x 1 / Latent space 64 x 64 x 1 / training time (32 GB): 14 days
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Diffusion models for data augmentation

► Results

► FID: generated from 1,000 samples drawn from 
each of the two distributions to be compared  

FID ↓

Train/val 16.9

Test 17.9

Input prompt
Synthetic image with 

key word T1-weighted
Synthetic image with 

key word T2-weighted
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Diffusion models for data augmentation

► Results

► FID: generated from 1,000 samples drawn from 
each of the two distributions to be compared  

FID ↓

Train/val 16.9

Test 17.9

Input prompt
Synthetic image with 

key word T1-weighted
Synthetic image with 

key word T2-weighted
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Data 
augmentation

Denoising

Anomaly 
detection

Segmentation
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Diffusion models for image segmentation

► Segmentation of tumors from MR images   [Wolleb et al., MIDL 2022]

► BRATS2020 dataset

► 4 different MR sequences per patient (T1, T2, T1ce, FLAIR)

► Training: 332 patients with 3D volumes sequences =>  16,998 2D images

► Testing: 37 patients with 3D volumes sequences =>  1,082 2D images

4 MR inputs per patient (T1, T2, T1ec, FLAIR) Mask output
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Diffusion models for image segmentation

► Learn the underlying distribution of tumor segmentation masks
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Diffusion models for image segmentation

► Conditioning with the 4 MR images using concatenation scheme
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Diffusion models for image segmentation

► At inference time: modelling of the segmentation uncertainty

Illustration taken from https://www.youtube.com/watch?v=US9CzPrT2H8
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Diffusion models for image segmentation

► Results

Illustration taken from https://arxiv.org/pdf/2112.03145
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Data 
augmentation

Denoising

Anomaly 
detection

Segmentation
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Diffusion models for anomaly detection

► Anomaly detection from MR images   [Wolleb et al., MICCAI 2024]

► BRATS2020 dataset

► 4 different MR sequences per patient (T1, T2, T1ce, FLAIR)

► Training: 332 patients with 3D volumes sequences =>  16,998 2D images

► 5,598 healthy 2D slices (without tumor) / 10,607 disease 2D slices

4 MR inputs per patient (T1, T2, T1ec, FLAIR) Mask output
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Diffusion models for anomaly detection

► General idea

How to preserve spatial anatomical information using a diffusion process?
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Diffusion models for anomaly detection

► Denoising Diffusion Implicit Models (DDIM)

• Reformulation of the diffusion process

• Remove the random component 𝜎𝑡𝜖

• Make the diffusion process deterministic
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Diffusion models for anomaly detection

► Main algorithm – part 1

• Train a classical DDPM on the dataset containing healthy and disease images

• Train a classifier network 𝐶 to predict the class label (healthy vs disease) from any 
noisy images 𝑥𝑡
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Diffusion models for anomaly detection

► Main algorithm – part 2

• Use DDIM process

• Compute the gradient of the classifier to guide the removing of anomaly regions

Illustration taken from https://arxiv.org/pdf/2203.04306
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Diffusion models for anomaly detection

► Result on an image with a tumor
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Diffusion models for anomaly detection

► Result on an image without any tumor

Illustration taken from https://arxiv.org/pdf/2203.04306
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That’s all folks
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Variation Auto Encoder framework

► Key idea

➔Generating sample 𝑧 according to 𝑝(𝑧|𝑥), implies that z has been generated 
by images from the original data distribution 𝑝(𝑥)

➔ If can reconstruct vectors back into images, we will effectively generate new 
samples from our original data distribution

➔We need to know the latent distribution, which is assume to be a normal 
distribution

➔ This allows to compute the likelihood p(x/z)

➔ The only unknown remains the true posterior p(z/x) 

➔ Thanks to variational inference, we approximate it using a Gaussian 
distribution q(z/x)

➔ This Gaussian will have parameters mu and sigma that we need to learn, 
which is an optimization process known as variational Bayes

➔We will train an encoder to estimate these parameters mu and sigma from 
the images

➔ Then we used a decoder to reconstruct images from the latent variables 
that are sampled from the approximate posterior


