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Resume

AI methods in cardiac image analysis
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Acquisition Image quantification

Segmentation
Tissue motion estimation
Blood flow estimation
Uncertainty modeling

Convolutional NN
Variational Auto-Encoders
Physics informed NN
Diffusion networks

Convolutional NN
Realistic simulations Transformers

Robust estimation of existing / new biomarkers

Ultrafast cardiac imaging

Etiology classification
Hypertension characterization 

Population representation

Multi-modal fusion
Heterogenous data integration



Echocardiographic imaging

►Anatomical imaging

Source: GE Healthcare web site

Quantification of clinical indices to diagnose 
cardiac pathologies
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Echocardiographic imaging

Quantification of clinical indices to diagnose 
cardiac pathologies

Segmentation of

anatomical structures

• Ventricular volumes

• Myocardial mass

• Ejection fraction
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Echocardiographic imaging

Challenges

►How to make the measurements extracted from images automatic, 
reliable and precise ?

→ Cardiac structure segmentation

→ Tissue motion / blood flow estimation
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Segmentation of 
echocardiographic images

[Leclerc et al., IEEE TMI 2019]
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Challenges
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1. Precise and accurate 2D segmentation

✓ Intra-observer variability

2. Frame-by-frame temporal consistency

3. Generalization ability across datasets

2D Public Echocardiographic Datasets

Name Year Investigators Nb. Subjects

Ground truth Views Characteristics

LVendo LVepi LA
Full cardiac 

cycle
A2C A4C

Multi-
Center

Multi-
Vendor

CAMUS 2019 CREATIS 500 ✓ ✓ ✓  ✓ ✓  

EchoNet 2019 Stanford 10,036 ✓     ✓  -

HMC-QU 2021
Hamad/Tam
pere/Qatar

292 ✓ ✓   ✓ ✓  ✓

TED 2022 CREATIS 98 ✓ ✓  ✓  ✓  

Limited by currently 
available public datasets



Echocardiographic datasets
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Multi center, multi vendor, multi annotator datasets

CAMUS
✓ Center 1
✓ 500 patients
✓ Annotator 1

(images)
✓ GE system

CARDINAL
✓ Center 2
✓ 240 patients
✓ NO annotator
✓ GE system

US-MR
✓ Center 3
✓ 30 patients 
✓ Annotator 2 (sequences)
✓ Philips system



Static image accuracy
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Intra-obs. .945 .930 4.6 4.5 1.4 1.3

Intra-observer variability can be reached using standard NN architectures
with enough data (around 2000 images) on a controlled dataset !



CAMUS open access dataset
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Segmentation with a 2D nnU-Net Manual annotation

Needs for temporal consistency



How to guarantee anatomical 
and  temporal consistency ?

[Painchaud et al., IEEE TMI 2022]

[Painchaud et al., IEEE TMI 2020]

11



Variational Auto Encoders
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Efficient representation of data through a latent space

✓ Local continuity

✓ Global completeness



Variational Auto Encoders
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Efficient representation of data through a latent space

✓ Local continuity

✓ Global completeness
Linear interpolation into the latent space

%



How to guarantee anatomical 
coherence ?

[Painchaud et al., IEEE TMI 2020]
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Constrained variational auto-encoder

15

✓ Use of a single neuron network with no activation and a regression on its instant on 
the cardiac phase between 0 (ED) and 1 (ES)

✓ Force the encoder to learn a more linear manifold of valid shapes in the latent space

Reinforcement of the local linearity of a shape latent space



Constrained variational auto-encoder
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✓ Linear interpolation in the latent space make sense

Reinforcement of the local linearity of a shape latent space

Constrained 
latent space



Segmentation with strong anatomical guarantees
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Efficient encoding of anatomical 
shapes in a latent space

?



Segmentation with strong anatomical guarantees
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Reconstruction of masks 
from rejection sampling

Densified latent space with 
5 million points



Segmentation with strong anatomical guarantees
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✓ (3 criteria) hole(s) in the LV, RV or LA

✓ (2 criteria) hole(s) between LV/MYO or between LV/LA

✓ (3 criteria) presence of more than one LV, MYO or LA

✓ (2 criteria) size of the area by which the LV touches the

background or the MYO touches the LA

✓ (1 criterion) ratio between the minimal and maximal 

thickness of the MYO

✓ (1 criterion) ratio between the width of the LV and the 

average thickness of the MYO

Definition of 12 anatomical metrics



Segmentation with strong anatomical guarantees
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Densified latent space with 
4 million points

Selection of samples with 
anatomical guarantees



Segmentation with strong anatomical guarantees
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Correction of segmentation to 
guarantee the plausibility of 

anatomical shapes

Almost same accuracy than the 
original methods but with correct 

anatomical shapes



How to guarantee temporal 
consistency ?

[Painchaud et al., IEEE TMI 2022]

[Painchaud et al., IEEE TMI 2020]
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Attribute-based regularization of VAE
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✓ Specific continuous-valued attributes forced to be encoded along specific dimensions

✓ 𝐿𝑜𝑠𝑠 = 𝑉𝐴𝐸 𝑙𝑜𝑠𝑠 + 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠

Generation of a structured latent space



Attribute-based regularization of VAE
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Sampling of the structured latent space



Description of the cardiac shapes
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Generation of structured latent space according to specific attributes

✓ Left ventricle (LV) cavity: area, length, basal width, orientation

✓ Myocardial area

✓ Epicardial center



Description of the cardiac shapes
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Latent vector

Attributes

Myocardial 
area

LV cavity 
length

LV cavity 
area



Proposed temporal pipeline
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Proposed temporal pipeline
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Some post-processing examples
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Original nnU-Net Post-processed nnU-Net



Some post-processing examples
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Original nnU-Net Post-processed nnU-Net



Segmentation of 
echocardiographic images with 

temporal consistency

[Ling et al., FIMH 2023]
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CARDINAL’s gold standard generation pipeline

01 0302

Applied trained models on 
CARDINAL and postprocessed
predictions using CASTOR to 

correct temporal inconsistency
-> GOLD STANDARD

Trained 2D nnU-Nets on CAMUS 
annotated A2C/A4C ED/ES 

frames

Trained DL models on CARDINAL 
with GOLD STANDARD

(378 sequences)

CASTOR
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Geometrical accuracy

Intra-obs. .945 .930 4.6 4.5 
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Clinical accuracy

Intra-obs. .896 4.7 .978 6.5 .981 4.5



Visualization – temporal consistency
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CAMUS CARDINAL
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Visualization – GE vs Philips

CAMUS annotator (CAMUS)

GE system

3D nnU-Net prediction (US-MR)

Philips system



Uncertainty estimation for 
cardiac image segmentation

[Judge et al., MICCAI 2022]
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Uncertainty estimation for image segmentation

Training phase
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Uncertainty estimation for image segmentation

Inference phase
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Uncertainty estimation for image segmentation

Illustration of uncertainty results

CAMUS

✓ 𝑁𝑏𝑦 = 9000

✓ 𝐿 = 150
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Uncertainty estimation for image segmentation

Quantitative evaluation

✓ Corr: correlation between the sum of the uncertainty values and (1-Dice) score 

✓ MI: Mutual information between the uncertainty map and the error map



Conclusions & Perspectives
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►Conclusions 

✓ VAE framework can be effectively used in medical imaging to

• Guarantee anatomical coherence
• Guarantee temporal consistency
• Estimate uncertainty for image segmentation

Conclusions & perspectives

►Perspectives

✓ Extensive validation on large scale dataset (>100.000 patients)



Thanks
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Appendices

45



Static image accuracy
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Intra-obs. .896 4.7 .978 6.5 .981 4.5

Intra-obs. .945 .930 4.6 4.5 1.4 1.3



Geometrical accuracy
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Visualization – GE vs Philips

Annotator 2
3D nnU-Net prediction 

Trained from annotator 1

Philips systemPhilips system



Attribute-based regularization of VAE
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Sampling of the structured latent space

✓ Specific attributes: area, length, thickness, slant, width, height

✓ Each column corresponds to traversal along a regularized dimension

WidthThicknessArea

Length Slant HeightLength Slant HeightLength Slant Height

WidthThicknessAreaWidthThicknessArea



Segmentation with strong anatomical guarantees
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Rejection sampling

𝑷 𝒛

𝑸 𝒛
● Targeted distribution 𝑷 𝒛

➔ Parzen window technique

● Proposed distribution 𝐐 𝒛

𝑷 𝒛
𝐤 𝑸 𝒛

● Constrain 𝐤𝐐 𝐳 > 𝑷 𝒛

➔ Automatic choice of 𝒌



Segmentation with strong anatomical guarantees
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Rejection sampling

● 𝐳~𝑸 𝒛
● 𝐮~𝑼𝒏𝒊𝒇(𝟎, 𝒌𝑸 𝒛 )

● Computation of 𝑷 𝒛

➔ If 𝒖 ≤ 𝑷(𝒛) then keep 𝒛
➔ If 𝒖 > 𝑷(𝒛) then reject 𝒛

Populated space


