Learning the latent spaces dedicated to the segmentation of medical imaging

Application to cardiac imaging

Pr. Olivier Bernard
Lab. CREATIS – Univ. of Lyon, France

What is the interest of generative models?

How to generate synthetic faces?

By modeling the corresponding distribution $p_{ heta}(\cdot)$!

What are the interest of generative models?

► How to model complex distributions?

What are the interest of generative models?

▶ What for ?

One obsession is to master the latent space !!!

Latent space $z_i \in \mathbb{R}^K$

What are the interest of generative models?

► What for ?

One obsession is to master the latent space !!!

Latent space $z_i \in \mathbb{R}^K$

Auto-encoders

How to learn a distribution?

Projection into a simpler, lower-dimensional representation space

Input space $\ x_i \in \mathbb{R}^{N imes M}$

How to learn a complex distribution?

How to have a relevant representation space ?

Output space $~\hat{x}_i \in \mathbb{R}^{N imes M}$

Auto-encoder framework

Standard architecture

Deep learning loss function

$$\mathrm{loss} = \|x - \hat{x}\|^2$$

Interest of auto-encoders

Generative model

Limitations

► Needs to better control the structure of the latent space

Interest of auto-encoders

► Generative model with better properties thanks to *variational framework*

Interest of auto-encoders

Generative model with variational framework

Linear interpolation into the latent space

$$t\cdot z_0+(1-t)\cdot z_7, \qquad 0\leq t\leq 1$$

Variational autoencoders

All the mathematical details are given there!

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html

Key concepts

- Enforcing a structured latent space
 - → Through a probabilistic framework
 - **→** By imposing continuity
 - **→** By imposing completeness

Mathematical formulation

Approximation of p(z|x) through a variational inference technique

Hypotheses

- ightharpoonup q(z|x) is modeled by an axis-aligned Gaussian distribution
- $ightarrow q(z|x) = \mathcal{N}\left(\mu_x, \sigma_x
 ight) = \mathcal{N}\left(g(x), diag(h(x))
 ight)$

$$(g^*,h^*) = rg\min_{(g,h)} \; D_{KL} \left(q(z|x) \parallel p(z|x)
ight)$$

q(z|x) Q(z|x) Z

 $D_{KL}\left(\cdot\parallel\cdot
ight)$ Kullback-Liebler divergence function

Optimization process

→ Maximization of the Evidence Lower Bound (ELBO)

$$\mathcal{L} = \mathbb{E}_{z \sim q_x} \left[log \left(p(x|z)
ight)
ight] - D_{KL} \left(q(z|x) \parallel p(z)
ight)$$

→ By exploiting gaussian assumption

$$p(x|z) = \mathcal{N}\left(f(z), cI\right)$$

$$\mathcal{L} \propto \mathbb{E}_{z \sim q_x} \left[-lpha \|x - f(z)\|^2
ight] - D_{KL} \left(q(z|x) \parallel p(z)
ight)$$

Optimization process

$$(f^*,g^*,h^*) = rg\min_{(f,g,h)} \; \left(\mathbb{E}_{z\sim q_x} \left[lpha \|x-f(z)\|^2
ight] + D_{KL} \left(q(z|x) \parallel p(z)
ight)
ight)$$

Deep learning loss function

$$ext{loss} = lpha \|x - f(z)\|^2 \, + \, D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight)$$

- $ightarrow g(\cdot)$ and $h(\cdot)$ are modeled through an encoder
- $\rightarrow f(\cdot)$ is modeled through a decoder

Loss interpretation

$$ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) + \left.lpha \|x - f(z)\|^2$$

Loss interpretation

$$ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \,+\, lpha \|x - f(z)\|^2$$

- \rightarrow $\mathcal{N}(g(x), h(x))$ imposes local *continuity*
- $\rightarrow \mathcal{N}(\cdot, \mathcal{N}(0, I))$ imposes global *completeness*

Practical applications

The obsession is to master the latent space !!!

Needs for accurate and robust segmentation of cardiac structures

Quantification of clinical indices from echocardiographic images

Needs for accurate and robust segmentation of cardiac structures

Anatomical clinical indices

How to guarantee the anatomical coherence?

- Constrained Variational Auto Encoder
 - Approximation of a latent space with local linear properties

Use of a 1-neuron net to reinforce the linearity of the latent space

- Constrained Variational Auto Encoder
 - Approximation of a latent space with local linear properties
 - → Linear interpolation in the latent space makes sense

Efficient encoding of anatomical shapes in a latent space

Densified latent space with 5 million points

- Definition of 12 anatomical metrics
 - (3 criteria) hole(s) in the LV, RV or LA
 - (2 criteria) hole(s) between LV and MYO or between LV and LA
 - (3 criteria) presence of more than one LV, MYO or LA
 - (2 criteria) size of the area by which the LV touches the background or the MYO touches the LA
 - (1 criterion) ratio between the minimal and maximal thickness of the MYO
 - (1 criterion) ratio between the width of the LV and the average thickness of the MYO

Densified latent space with 4 million points

Correction of segmentation to guarantee the plausibility of anatomical shapes

Almost same accuracy as the original methods but with correct anatomical shapes

How to guarantee temporal consistency?

Quantification of clinical indices from echocardiographic images

Cardiac segmentation with temporal consistency

- ► AR-VAE: attribute-based regularization of VAE latent space [Pati, Neural Comp. Appli., 2021]
 - Generation of structured latent space
 - → Specific continuous-valued attributes forced to be encoded along specific dimensions
 - \rightarrow Loss = VAE loss + Attribute Regularisation Loss

- ► AR-VAE: attribute-based regularization of VAE latent space [Pati, Neural Comp. Appli., 2021]
 - Sampling of the structured latent space

Cardiac segmentation with temporal consistency

- ► AR-VAE: attribute-based regularization of VAE latent space [Pati, Neural Comp. Appli., 2021]
 - Sampling of the structured latent space
 - > Specific attribute (from left to right): area, length, thickness, slant, width, height
 - → Each column corresponds to traversal along a regularized dimension

Cardiac segmentation with temporal consistency

- Application to the description of the cardiac shapes
 - Generation of structured latent space according to the following attributes
 - → Left ventricle (LV) cavity: area, length, basal width, orientation
 - Myocardial area
 - Epicardial center

Cardiac segmentation with temporal consistency

Proposed temporal pipeline

[Painchaud, IEEE TMI, 2022]

Cardiac segmentation with temporal consistency

Some post-processing examples

Some post-processing examples

Uncertainty estimation for cardiac image segmentation

Uncertainty estimation for image segmentation

Uncertainty estimation for image segmentation

Predicted mask

Uncertainty estimation for image segmentation

Uncertainty results

To conclude

To conclude

- VAEs can be used effectively in medical imaging
 - Guarantee anatomical coherence

√

Guarantee temporal consistency

1

Estimation uncertainty for image segmentation

 \checkmark

Generative interest limited to simple distribution

- Useful tool for characterizing populations
 - Need to properly structure the learned latent space
 - Need to work on relatively large cohorts

Appendix

Probabilistic framework

Continuity

$$\mathcal{N}\left(g(x),h(x)
ight)$$

Probabilistic framework

Completeness

$$\mathcal{N}\left(\cdot,\mathcal{N}(0,I)
ight)$$

Deep learning implementation

Interest of auto-encoders

Data representation

Temporal inconsistency detection from the latent space

Choppy contraction/dilation of the LV cavity

Abrupt vertical shifts of the cardiac shape

Cardiac segmentation with strong anatomical guarantees

Rejection sampling

- Targeted distribution P(z)
 - Parzen window technique
- Proposed distribution $\mathbf{Q}(\mathbf{z})$

- Constrain kQ(z) > P(z)
 - **→** Automatic choice of *k*

0.000

Rejection sampling

- $\mathbf{z} \sim \mathbf{Q}(\mathbf{z})$
- $\mathbf{u} \sim Unif(\mathbf{0}, kQ(\mathbf{z}))$
- Computation of P(z)
 - \rightarrow If $u \leq P(z)$ then keep z
 - \rightarrow If u > P(z) then reject z

Needs for accurate and robust segmentation of cardiac structures

Functional clinical indices

- → Volume dynamic of the cavities over the cardiac cycle
- → Global longitudinal strain of the heart muscle

Cardiac segmentation with strong anatomical guarantees

Quantitative evaluation

- CAMUS dataset
 - → 500 patients x 2 probe orientation x 2 key frames
 - **→ 2000** images with reference contours
 - → Metrics: Dice / Hausdorff dist.

Example of a segmentation result

	Original	VAE		Nearest Neighbors		
Methods		-	Robust	w/o RS	w/ RS	
U-Net [5], [8]	.921 / 6.0	.923 / 5.7	.923 / 5.7	.922 / 5.7	.922 / 5.7	
LUNet [14]	.922 / 5.9	.921 / 5.9	.922 / 5.9	.921 / 5.9	.921 / 6.0	
ENet [31]	.923 / 5.8	.921 / 5.9	.921 / 5.9	.920 / 5.9	.920 / 5.9	
SHG [32]	.915 / 6.2	.915 / 6.2	.916 / 6.2	.915 / 6.2	.915 / 6.2	
SRF [33]	.879 / 13.1	.877 / 13.2	.878 / 13.2	.879 / 13.0	.879 / 13.0	
BEASM-auto [34], [35]	.868 / 10.5	.868 / 10.5	.867 / 10.5	.868 / 10.5	.868 / 10.5	
BEASM-semi [5], [34]	.899 / 7.8	.899 / 7.8	.899 / 7.8	.899 / 7.8	.899 / 7.8	

Quantitative evaluation

- → Corr: Correlation between the sum of the uncertainty values (foreground) and Dice score
- → MI: Mutual Information between the uncertainty map and the error map

Training data Testing data	CAMUS		CAMUS		Shenzen	
	CAMUS		HMC-QU		JSRT	
Method	Corr. ↑	MI↑	Corr. ↑	MI ↑	Corr. ↑	MI ↑
Entropy	0.66	0.02	0.34	0.02	0.89	0.02
ConfidNet [1]	0.34	0.04	0.36	0.04	0.69	0.01
CRISP	0.71	0.20	0.41	0.06	0.83	0.11
McDropout [3]	0.67	0.03	0.26	0.02	$0.82 \\ 0.82$	0.03
CRISP-MC	0.78	0.26	0.29	0.06		0.08
LCE [2]	0.58	0.44	0.35	0.37	0.87 0.85	0.06
CRISP-LCE	0.59	0.08	0.34	0.13		0.11