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Successful AI solutions trained on simulated images exclusively
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Simulation pipeline

Ultrafast cardiac 
imaging

Tissue motion 
estimation

Color Doppler 
imaging

AI solutions

[Lu et al., IEEE IUS 2023] [Puig et al., IEEE IUS 2023]
Distance

error

1500 Hz



Echocardiographic imaging

Quantification of clinical indices to diagnose 
cardiac pathologies

Extraction of

mechanical properties

• Myocardial stiffness

• Myocardial elasticity

• Others…
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Tracking of

tissue structures

Conventional 
imaging

Ultrafast 
imaging



Echocardiographic imaging

Challenges

►How to make the motion estimation from images more accurate and 
reproducible ?

► Is it possible to significantly increase frame rate while maintaining 
image quality ?
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Principle of image formation in 
echocardiography
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Generating images from sounds

Transmission of 
a focused US 

wave

Reflected waves are 
received by the 

transducer

Envelope signal
Gamma compression

Time-gain compensation

Beamforming

RF signal (real)

IQ signal (complex)

Demodulation
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Focus-wave transmit

PRF  = 4500 Hz

Depth <= 17 cm

90 firings for 1 image

Frame rate = 50 Hz
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Conventional imaging technique



Diverging-wave transmit

PRF  = 4500 Hz

Depth <= 17 cm

31 firings for 1 image

Frame rate = 145 Hz
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Fast imaging technique



Diverging-wave transmit

1000 fpsTemporal frequency > 1000 Hz
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Potential for ultrafast imaging



Generation of realistic synthetic 
echocardiographic sequences

[Sun et al., IEEE TUFFC 2022]

[Evain et al., IEEE TMI 2022]

[Alessandrini et al., IEEE TMI 2016]

[Lu et al., IEEE IUS 2023]
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Target applications

Transmission scheme

Classical scheme

(Focused waves)

Ultrafast scheme

(Diverging waves)

Deep learning for
motion estimation

Deep learning for 
ultrafast cardiac imaging

Frame rate: 50 Hz Frame rate: 1500 Hz
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Single-frame B-mode simulation workflow

Lateral position [cm]

D
e

p
th

 [
cm

]

SIMUS: Physical simulatorBeamforming

Envelope signal
Gamma compression
Time-gain compensation

Scatterers & probe 
settings

64 elem. phased array
2.6 MHz center freq.

Transmission scheme

[Garcia et al., CMPB 2022]

10 scatterers per resolution cell (𝜆2)

Real sequence

Simulated sequence
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Scatterers strategy

✓ Position updates from a dedicated strategy

✓ Reflection coefficients remain unchanged

Myocardium

✓ Positions remain unchanged

✓ Reflection coefficients updated directly from 
the real sequence

Background
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✓ 10 scatterers per 𝜆2

Spatial density



Myocardial scatterers strategy

Electromechanical model 
(@INRIA, France)

Simple remeshing strategy

Validation of myocardial 
motion estimation

[Alessandrini et al., IEEE TMI 2018]

Myocardial motion 
estimation with deep 

learning

✓ SyntheticMultiVendors - open access dataset

[Evain et al., IEEE TMI 2022]

✓ SyntheticCAMUS - open access dataset
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B-mode sequence simulation workflow

Real sequence

Lateral position [cm]

D
e

p
th

 [
cm

]

Simulated sequence

Background scatterers Myocardial scatterers

- Scatterers
- Probe settings
- Focused waves

SIMUS: Physical simulator

Beamforming

Envelope signal
Gamma compression
Time-gain compensation
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SyntheticCAMUS dataset - properties

Real B-mode 
sequences

Simulated B-mode 
sequences with meshes

Global Long Strain (GLS)

G
LS

 [
%

]

FRAME NUMBER

High variability/richness for AI 
methods
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Tissue motion estimation in 
echocardiography with deep 

learning

[Evain et al., IEEE TMI 2022]
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Can DL solutions learn from our synthetic data ?

✓ PWCNet, RAFT, FlowFormer, …

Numerous DL methods for motion estimation

cPWC-Net architecture dedicated to motion estimation
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Evaluation strategy

✓ EPE: End point Error (mm)

Motion estimation error

✓ dm: Average distance (mm)
✓ dH: Hausdorff distance (mm)

✓ GLS (%)

Geometric metrics

Clinical metrics
Estimated from tracked contours
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Evaluation of method generalization

✓ From GE scanners
✓ From the open access dataset CAMUS
✓ University hospital of St Etienne, France
✓ Testing dataset:  30 patients in A4C

1443 annotated image pairs

First dataset

✓ From Philips scanners
✓ Private dataset
✓ University hospital of Caen, France
✓ Testing dataset:  30 patients in A4C

1536 annotated image pairs
5 groups of pathologies

Second dataset
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Tested methods

✓ State-of-the-art approach
✓ Block matching method

PIV

✓ Trained from synthetic datasets
✓ SyntheticMultiVendors and SyntheticCAMUS
✓ 11380 image pairs (A4C, A3C, A2C)

C-PWC-Net
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✓ Geometrical scores
(distance errors)

✓ Clinical scores
(Mean absolute error)
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Results on the first dataset – GE – center n°1 – 30 patients



Results on the first dataset – GE – center n°1 – 30 patients

Distance Error
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Results on the second dataset – Philips – center n°2 – 30 patients

✓ Geometrical scores 
with cPWC-Net

✓ Clinical scores with 
cPWC-Net
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Distance Error
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Results on the second dataset – Philips – center n°2 – 30 patients



Ultrafast cardiac imaging using 
deep learning

[Lu et al., IEEE IUS 2023]
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Framework of cardiac imaging simulation

time

∆𝑡 = 1/𝑃𝑅𝐹

Dynamic transmissions: 3 
successive angles along time

Compounding of 31 transmission 
angles at fixed time

Real sequence

Scatterers maps 
at the PRF scale

Simulated DWs

Virtual cohort

✓ 94 sequences in A4C

✓ 4344 frames with 
corresponding cardiac 
texture and myocardial 
displacement fields
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Overall workflow

Beamforming

RF image (real)

IQ image (complex)

Demodulation

Inputs: 3 IQ images

Complex neural 
network

Output Y: reconstructed 
IQ image 

Envelope signal
Gamma compression

Time-gain compensation

B-mode image 

-20°

0°

20°

𝜃∗ = argmin
𝜃

෍

𝑖=1

𝑁

෠𝑌𝑖 − 𝑌𝑖 2

2

Reference ෠𝑌: compounding 
of 31 IQ images



Results on the simulated sequences
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Standard compounding (3 DWs) CNN (3 DWs) Compounding (31 DWs)

Structural Similarity Index

Frame number

Mean End Point Error (mm)

Frame number



Results on the real sequences
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Structural Similarity Index

Frame number

Mean End Point Diff. (mm)

Frame number

Standard compounding (3 DWs) CNN (3 DWs) Compounding (32 DWs)



Results on the real sequences
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Towards ultrafast imaging

Fps / 40 Fps /10

Temporal 
frequency  1500 Hz



Conclusions & Perspectives
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►Conclusions 

✓ Learning from simulations alone is possible and effective !

✓ Several synthetic datasets are already available

Conclusions & perspectives

►Perspectives

✓ Extension of the framework to simulate large-scale synthetic cohorts

> 100.000 patients



Thanks
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Appendices
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Echocardiographic imaging

►Anatomical imaging

Source: GE Healthcare web site

Quantification of clinical indices to diagnose 
cardiac pathologies
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RF 2 IQ signals
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RF vs I/Q signal

RF spectrum

Down-mixing

Low pass filtering

Downsampling
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RF vs I/Q signal

RF signal

I 

Q 

(I2+Q2)
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Coherent compounding

High-contrast
High-resolution
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Poor quality 
individual images

32 firings



Patient-based B-mode 
echocardiographic simulation for 
validation of myocardial motion 

estimation

[Alessandrini et al., IEEE TMI 2018]
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Displacement of myocardial point scatterers

✓ Electrical activation / Mechanical contraction

✓ Biophysical parameters: contractility, stiffness, conduction

✓ Possibility of introducing controlled pathological movements

Electromechanical model (from INRIA, Epione team)

Radial motionLong. motion torsionInverse rotation

Courtesy of Maxime Sermesant, INRIA, France 42



Personalization procedure

3D

EM model / real 3D US 
sequence registration

1
Real 3D sequence / 2D US 
sequence registration2

Semi-automatic segmentation Semi-automatic segmentation

𝝓𝟏 ∙ 𝝓𝟐 𝝓𝟏 ∙
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B-mode sequence simulation workflow

✓ SyntheticMultiVendors - open access dataset

✓ 7 different vendors, 3 views (A3C, A4C, A2C) per vendor

✓ 1 healthy subject + 4 pathologies per view (lcx, laddist, ladprox, rca)

https://gbiomed.kuleuven.be/english/research/50000635/50508167/open-data

Virtual cohort
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SyntheticMultiVendors dataset - properties

Simulated B-mode 
sequences

Simulated B-mode 
sequences with meshes

Global Long Strain (GLS)

G
LS

 [
%

]

FRAME NUMBER

?

Realistic analytical motion 
model for validation
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Simple remeshing strategy 

Motivations: match easily the myocardial anatomy and motion of any patients

✓ Ability to simulate large-scale synthetic dataset

✓ Simulation of a wide range of myocardial deformations

Real sequence Simulated sequence
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Displacement of myocardial point scatterers

Manual annotation or 
automatic segmentation

Myocardial mesh 
generation for each 

contour

Sequence of 
myocardial meshes

Synthetic motion with 
locally affine 

displacements
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B-mode sequence simulation workflow

Virtual cohort

✓ SyntheticCAMUS - open access dataset

✓ 98 simulated sequences in A4C

✓ Download at humanheart-project webiste

https://humanheart-project.creatis.insa-lyon.fr/database/#collection
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Ultrasound physical simulator

✓ Field II

✓ k-Wave

✓ Verasonics

✓ SIMUS

Several existing solutions

✓ Modeling of the emitted field (linear propagation)

✓ Modeling of the insonified medium through point scatterers

Most of them based on the same strategy

[Garcia et al., CMPB 2022]
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Complex neural network

50

input layer 1 layer 2 layer 3 layer 4 layer 5 output

Complex 
convolution

Activation 
function

Inception 
module

3 key properties



Complex convolution

𝑋 = 𝑋𝑟 + 𝑗𝑋𝑖

𝑊 = 𝑊𝑟 + 𝑗𝑊𝑖

𝑍 = 𝑋 ∗𝑊 = 𝑋𝑟 + 𝑗𝑋𝑖 ∗ 𝑊𝑟 + 𝑗𝑊𝑖

𝑍 = 𝑋𝑟 ∗ 𝑊𝑟 − 𝑋𝑖 ∗ 𝑊𝑖 + 𝑗 𝑋𝑖 ∗ 𝑊𝑟 + 𝑋𝑟 ∗ 𝑊𝑖

∗

𝑋𝑟

𝑋𝑖

𝑋𝑟

𝑋𝑖

𝑊𝑟

𝑊𝑖

𝑊𝑟

𝑊𝑟

𝑊𝑖

−𝑊𝑖

𝑋𝑟 ∗ 𝑊𝑟 − 𝑋𝑖 ∗ 𝑊𝑖

𝑋𝑖 ∗ 𝑊𝑟 + 𝑋𝑟 ∗ 𝑊𝑖

Complex feature maps

Complex kernels

𝑍 = 𝑋 ∗𝑊

Complex convolutions
Complex output
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Activation function
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✓ Preserves magnitude and phase of signals throughout the complex plan

✓ Does not change the differentiability of complex convolutions

AMU: Amplitude Maxout Unit

Channel-wise 
argmax

𝑋𝑟

𝑋𝑖

𝑍𝑟

𝑍𝑖 Amplitude map 𝑍𝑎

Complex 
conv.

𝑍𝑟[argmax(𝑍𝑎)]

𝑍𝑖[argmax(𝑍𝑎)]

Amplitude maxout



Inception module
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Interest

✓ Deal with spatial varying 
properties of US images

Multi-scale convolution + maxout

filter 
concatenation

1x1 conv. 
+ maxout

output



54

Complex neural network

input layer 1 layer 2 layer 3 layer 4 layer 5 output


