

Image Processing and Analysis

Generative models Variational Auto-Encoder

olivier.bernard@insa-lyon.fr

► How to generate synthetic faces?

By modeling the corresponding distribution $x \sim p_\theta(x)$!

→ Are classical distributions still relevant ?

▶ How to model complex distributions?

The image space (modeled by $p(x)$) is projected into a more efficient hidden representation space, called the latent space (modeled by $p(z)$)

Face distribution

▶ For what purpose? | An obsession: mastering the latent space!

Latent space $\ z_i \in \mathbb{R}^K$

▶ For what purpose? | An obsession: mastering the latent space!

Latent space $z_i \in \mathbb{R}^K$

Auto-encoders

▶ Projection into a more efficient and lower-dimensional representation space

Input space $\ x_i \in \mathbb{R}^{N \times M}$

▶ How to have a relevant representation space?

Output space $\hat{x}_i \in \mathbb{R}^{N \times M}$

► Standard architectures

▶ Example of a cost function

$$
\text{loss} = \|x - \hat{x}\|^2
$$

► Encoder / Decoder modeled by neural networks (convolutional)

$$
\boxed{\quad \text{loss} = \|x - f(e(x))\|^2}
$$

▶ Autoencoder? What for?

► Generative models

▶ Need to better control the structure of the latent space

► Generative model with better properties thanks to the *variational framework*

▶ Generative model with variational framework

First component

Linear interpolation in the latent space

$$
t\cdot z_0+(1-t)\cdot z_7,\qquad 0\leq t\leq 1
$$

Variational Auto-Encoder

The entire mathematics are described in the following blog

<https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html>

▶ Reinforcement of a structured latent space

→ Through a probabilistic framework

→ By imposing continuity constraints

→ By imposing completeness constraints

► Probabilistic framework: *continuity*

→ Introduction of local regularizations of the latent space

 \rightarrow Each input data x is encoded as a Gaussian distribution $q_x(z) = N(\mu_x, diag(\sigma_x))$

► Probabilistic framework: *continuity*

→ Sampling from a local region of the latent space produces similar results

points

- ► Probabilistic framework: *completeness*
	- ➔ Encourage that every reconstructed point in the latent space produces consistent results

- ► Probabilistic framework: *completeness*
	- \rightarrow Impose that all distributions $q_x(z)$ are close to a standard normal distribution $N(0, I)$
	- \rightarrow Variances close to 1 => limits the generation of point distributions
	- \rightarrow Means close to 0 => encourages distributions that are close to each other

► Probabilistic framework: *continuity & completeness*

→ Architecture of VAEs

Variational Auto-Encoder

Mathematical formulation

How to generate synthetic faces?

- \rightarrow Let $p(\cdot)$ be the distribution that represents human faces
- \rightarrow We want to find a model f that generates samples x whose probability $p(x)$ is maximal

$$
f^* = \underset{f}{\arg\max} \ p(x) \quad \text{ with } \ x \text{ generated by a model } f(\cdot)
$$

→ In this case, the generated samples resemble human faces from the training dataset

Modeling a hidden variable z to reduce the complexity of the problem

→ Reminder of Bayes' theorem

► Mathematical formulation

 \rightarrow The distribution $p(z|x)$ is generally complex to model

Approximation of $p(z|x)$ by a simple and computable function $q(z|x)$ that will allow efficient sampling of z

► Variational inference

- \rightarrow Statistical approximation technique for complex distributions, here $p(z|x)$
- **→** Definition of a parameterized family of distributions
	- E.g., family of Gaussians with parameters μ_{x} , σ_{x} modeled by functions to be determined
- \rightarrow Find the best approximation of the target distribution in this family
- \rightarrow The best element of the family minimizes an approximation error measure between two distributions
	- ► Kullback-Leibler divergence function is often used

► Kullback-Leibler divergence function

→ Distance measure between two distributions via relative entropy

$$
D_{KL}\left(p \parallel q\right) = \int p(x) \cdot \log \left(\frac{p(x)}{q(x)}\right) \! dx
$$

 \rightarrow D_{KL} is a measure that is always positive $D_{KL}(p||q) \ge 0$

 \rightarrow D_{KL} is a nonsymmetric measure $D_{KL}(p||q) \neq D_{KL}(q||p)$

- For the purple distribution, the distance AB is large
- For the green distribution, the distance AB is moderate
- The notion of distance differs depending on the distributions

► Variational inference

- \rightarrow $p(z|x)$ is approximated by a family of functions $q(z|x)$
- \rightarrow $q(z|x)$ is modeled by a Gaussian distribution aligned with the axes

 $q(z|x) = \mathcal{N}(\mu_x, \sigma_x) = \mathcal{N}(g(x), diag(h(x)))$

- \rightarrow $g(x)$ and $h(x)$ are functions that represent the means μ_{χ} and the covariances σ_{χ}
- **→ Measure of approximation between the two** distributions $p(z|x)$ et $q(z|x)$

$$
(g^*,h^*)=\argmin_{(g,h)}\ D_{KL}\left(q(z|x)\parallel p(z|x)\right)
$$

$$
q(z|x) \left(\begin{matrix} x \\ \\ \\ \\ \end{matrix}\right) p(x|z)
$$

► Variational inference

 \rightarrow By playing with the expressions of $p(x)$, it is possible to find the following definitions and relationships

$$
\log \, p(x) \geq \int q(z|x) \log \left(\frac{p(x,z)}{q(z|x)} \right) dz
$$

$$
\log \, p(x) \geq ELBO
$$

$$
log\; p(x) = ELBO + D_{KL}\left(q(z|x)\parallel p(z|x)\right)
$$

 \rightarrow ELBO is a lower bound of $\log p(x)$

 \rightarrow Maximizing ELBO amounts to maximizing $\log p(x)$

 \rightarrow If we maximize $\log p(x)$, then we minimize $D_{KL}(q(z|x) || p(z|x))$

► Optimization process

- \rightarrow $g(\cdot)$ et $h(\cdot)$ are modelled by an encoder
- \rightarrow $f(\cdot)$ is modelled by a decoder

Interpretation of the loss function

 $\text{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)\right)\right), \mathcal{N}\left(0, I\right)\right) \, + \, \alpha \|x - f(z)\|^2 \, \, .$

► Interpretation of the loss function

 $\text{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)\right)\right), \mathcal{N}\left(0, I\right)\right) \, + \, \alpha \|x - f(z)\|^2 \, \, .$

→ $\mathcal{N}(g(x), h(x))$ imposes a local *continuity* constraint

→ $\mathcal{N}(\cdot, \mathcal{N}(0, I))$ imposes a global *completeness* constraint

► Reparameterization trick

Practical application

The obsession is to master the latent space !

► VAE latent space regularization based on image attributes

- Structured latent space generation
	- ➔ Specific attributes with continuous values must be coded according to specific dimensions

Structuring latent space

- ► Attribute regularization term
	- What is an attribute?
		- ➔ Measurement performed in image space to characterize a target object
		- ➔ E.g.: handwritten digits (MNIST database)
			- ▶ Attributes: line thickness, inclination, length, area, ...
		- **→** Pre-training image attribute measurements used as input data

- ► Attribute regularization term
	- During the learning phase
		- \rightarrow Computation for each attribute a of a distance matrix $D_a \in \mathbb{R}^{m \times m}$ from the m images $\{x_i\}_{1\leq i\leq m}$ present in the current batch

$$
D_a(i,j) = a(x_i) - a(x_j) \quad \text{with} \quad i, j \in [0, m)
$$

 \rightarrow Computation for each attribute r of a distance matrix $D_r \in \mathbb{R}^{m \times m}$ from the m latent vector $\{z_i\}_{1\leq i\leq m}$ corresponding to the images in the current batch

$$
D_r(i,j) = z_i^r - z_j^r \quad \text{with} \quad i, j \in [0, m)
$$

→ Introduction of the following loss term

$$
\mathcal{L}_{r,a} = MAE\left(\tanh\left(D_r\right) - sign\left(D_a\right)\right)
$$

► Generate a latent space structured according to attributes

► Generate a latent space structured according to attributes

● Sampling of the structured latent space

Generate a latent space structured according to attributes

- Sampling of the structured latent space
	- ➔ Specific attributes: surface, length, thickness, inclination, width, height
	- **→** Each column corresponds to a traverse along a regularized dimension

Application example: representation of cardiac shapes

- Generation of a latent space structured according to the following attributes
	- ➔ Left ventricular (LV) cavity: surface area, length, basal width, orientation
	- **→** Myocardial surface
	- \rightarrow Epicardial wall center

Variational auto-encoders with vector quantization

Another VAE-inspired method: VQ-VAE

● Joint learning of an auto-encoder and a discrete latent space representation

• The latent space is defined by the set of vectors $\{e_i\}_{i\in[1,K]}$ that are learned

Another VAE-inspired method: VQ-VAE

• The encoder outputs a matrix of size $[M \times M \times D]$ corresponding to $[M \times M]$ vectors of size D

● Each encoder vector is compared with vectors in latent space, and the number of the closest vector is assigned in discrete space $q(z|x)$

Another VAE-inspired method: VQ-VAE

- The decoder input corresponds to a matrix of size $[M \times M]$ where each component is a vector of size D
- Each component corresponds to a vector in latent space chosen according to its number in discrete space $q(z|x)$

● The loss function to be minimized is as follows

 $\mathcal{L} = log(p(x|z_q)) + ||sg[z_e(x)] - e||_2 + \beta ||z_e(x) - sg[e]||_2$

sg[⋅]: Identity function in forward and null function in backward

That's all folks

▶ Data representation

Cas pathologiques

Vecteur d'entrée