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What is the purpose of generative models?

► How to generate synthetic faces?

By modeling the corresponding 
distribution x~𝑝𝜃(𝑥) !

➔ Are classical distributions still 
relevant ?
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What is the purpose of generative models?

► How to model complex distributions?

The image space (modeled by 𝑝(𝑥)) is projected into a more efficient hidden 
representation space, called the latent space (modeled by 𝑝(𝑧))
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What is the purpose of generative models?

► For what purpose? An obsession: mastering the latent space!
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Auto-encoders
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How to learn a distribution?

► Projection into a more efficient and lower-dimensional representation space
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How to learn a distribution?

► How to have a relevant representation space?
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The formalism of autoencoders

► Standard architectures

► Example of a cost function
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Implementation through deep learning

► Encoder / Decoder modeled by neural networks (convolutional)
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Interest of autoencoders

► Autoencoder? What for?

➔Data representation
➔Generative model
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Interest of autoencoders

► Generative models
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Limitations

► Need to better control the structure of the latent space

Lack of global 
completeness

Lack of local 
continuity
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Interest of autoencoders

► Generative model with better properties thanks to the variational framework
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Interest of autoencoders

► Generative model with variational framework

Linear interpolation in the latent space
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Variational Auto-Encoder

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html

The entire mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html
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Key concepts

► Reinforcement of a structured latent space

➔ Through a probabilistic framework

➔ By imposing continuity constraints

➔ By imposing completeness constraints
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Key concepts

► Probabilistic framework: continuity

➔ Introduction of local regularizations of the latent space

➔ Each input data 𝑥 is encoded as a Gaussian distribution 𝑞𝑥 𝑧 = Ν 𝜇𝑥 , 𝑑𝑖𝑎𝑔(𝜎𝑥)
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Key concepts

► Probabilistic framework: continuity

➔ Sampling from a local region of the latent space produces similar results
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Key concepts

► Probabilistic framework: completeness

➔ Encourage that every reconstructed point in the latent space produces 
consistent results
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Key concepts

► Probabilistic framework: completeness

➔ Impose that all distributions 𝑞𝑥 𝑧 are close to a standard normal distribution 
Ν 0, Ι

➔ Variances close to 1  =>     limits the generation of point distributions

➔Means close to 0       =>     encourages distributions that are close to each other
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Key concepts

► Probabilistic framework: continuity & completeness

➔ Architecture of VAEs
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Variational Auto-Encoder

Mathematical formulation
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What is the purpose of generative models?

► How to generate synthetic faces?

➔ Let 𝑝(∙) be the distribution that represents 
human faces

➔We want to find a model 𝑓 that generates 
samples 𝑥 whose probability 𝑝(𝑥) is maximal

➔ In this case, the generated samples resemble 
human faces from the training dataset
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Probabilistic framework

► Modeling a hidden variable 𝑧 to reduce the complexity of the problem

➔ Reminder of Bayes' theorem

Observation 
variables

Hidden 
variables
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Probabilistic framework

► Mathematical formulation

Approximation of 𝑝 𝑧|𝑥 by a simple and computable function 𝑞 𝑧|𝑥 that will 
allow efficient sampling of 𝑧

➔ The distribution 𝑝 𝑧|𝑥 is generally complex to model

Observation 
variables

Hidden 
variables
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Probabilistic framework

► Variational inference

➔ Statistical approximation technique for complex distributions, here 𝑝 𝑧|𝑥

➔ Definition of a parameterized family of distributions

► e.g., family of Gaussians with parameters 𝜇𝑥 , 𝜎𝑥 modeled by functions to be 
determined

➔ Find the best approximation of the target distribution in this family

➔ The best element of the family minimizes an approximation error measure 
between two distributions

► Kullback-Leibler divergence function is often used
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Probabilistic framework

► Kullback-Leibler divergence function

➔ Distance measure between two distributions via relative entropy

➔𝐷𝐾𝐿 is a measure that is always positive 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

➔𝐷𝐾𝐿 is a nonsymmetric measure 𝐷𝐾𝐿 𝑝||𝑞 ≠ 𝐷𝐾𝐿 𝑞||𝑝

• For the purple distribution, the 
distance AB is large

• For the green distribution, the 
distance AB is moderate

• The notion of distance differs 
depending on the distributions
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Probabilistic framework

► Variational inference

➔ 𝑝(𝑧|𝑥) is approximated by a family of functions 𝑞(𝑧|𝑥)

➔ 𝑞(𝑧|𝑥) is modeled by a Gaussian distribution aligned with the axes

➔ 𝑔(𝑥) and ℎ(𝑥) are functions that represent the means

𝜇𝑥 and the covariances 𝜎𝑥

➔Measure of approximation between the two 

distributions 𝑝(𝑧|𝑥) et 𝑞(𝑧|𝑥)
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Probabilistic framework

► Variational inference

➔ By playing with the expressions of 𝑝(𝑥), it is possible to find the following 
definitions and relationships

➔ ELBO is a lower bound of log 𝑝(𝑥)

➔Maximizing ELBO amounts to maximizing log 𝑝(𝑥)

➔ If we maximize log 𝑝(𝑥), then we minimize 𝐷𝐾𝐿 𝑞(𝑧|𝑥) || 𝑝(𝑧|𝑥)
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encoder decoder

Probabilistic framework

► Optimization process

► Deep learning loss function

➔ 𝑔 ∙ et ℎ(∙) are modelled by an encoder

➔ 𝑓 ∙ is modelled by a decoder
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Probabilistic framework

► Interpretation of the loss function
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Probabilistic framework

► Interpretation of the loss function

➔ imposes a local continuity constraint

➔ imposes a global completeness constraint
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Implementation through deep learning

► Reparameterization trick
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Practical application

The obsession is to master the latent space !
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Structuration of the latent space: AR-VAE

► VAE latent space regularization based on image attributes

● Structured latent space generation

➔ Specific attributes with continuous values must be coded according to specific 
dimensions

Data attachment 
term

KL divergence
term

Attribute regularization 
term

Structuring latent space
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Structuration of the latent space: AR-VAE

► Attribute regularization term

● What is an attribute ?

➔ Measurement performed in image space to characterize a target object

➔ E.g.: handwritten digits (MNIST database)

► Attributes: line thickness, inclination, length, area, ...

➔ Pre-training image attribute measurements used as input data

Tilt Thickness
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Structuration of the latent space: AR-VAE

► Attribute regularization term

● During the learning phase

➔ Computation for each attribute 𝑎 of a distance matrix 𝐷𝑎 ∈ ℝ𝑚×𝑚 from the 𝑚
images 𝑥𝑖 1≤𝑖≤𝑚 present in the current batch

➔ Computation for each attribute 𝑟 of a distance matrix 𝐷𝑟 ∈ ℝ𝑚×𝑚 from the 𝑚
latent vector 𝑧𝑖 1≤𝑖≤𝑚 corresponding to the images in the current batch

➔ Introduction of the following loss term

𝐷𝑎 𝑖, 𝑗 = 𝑎 𝑥𝑖 − 𝑎 𝑥𝑗 with       𝑖, 𝑗 ∈ [0,𝑚)

𝐷𝑟 𝑖, 𝑗 = 𝑧𝑖
𝑟 − 𝑧𝑗

𝑟 with       𝑖, 𝑗 ∈ [0,𝑚)
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Structuration of the latent space: AR-VAE

► Generate a latent space structured according to attributes
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► Generate a latent space structured according to attributes

● Sampling of the structured latent space

Structuration of the latent space: AR-VAE
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► Generate a latent space structured according to attributes

● Sampling of the structured latent space

➔ Specific attributes: surface, length, thickness, inclination, width, height

➔ Each column corresponds to a traverse along a regularized dimension

Surface

Length

Thickness

Tilt Height

Width

Length Tilt Height Length Tilt Height

Surface Thickness Width
Surface Thickness Width

Structuration of the latent space: AR-VAE
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► Application example: representation of cardiac shapes

● Generation of a latent space structured according to the following attributes

➔ Left ventricular (LV) cavity: surface area, length, basal width, orientation

➔ Myocardial surface

➔ Epicardial wall center

Structuration of the latent space: AR-VAE
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LV cavity 
area

Myocardial 
area

Length of LV 
cavity

LV cavity 
orientation

Latent vector

Attributes

Structuration of the latent space: AR-VAE
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Variational auto-encoders
with vector quantization
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Another VAE-inspired method: VQ-VAE

● Joint learning of an auto-encoder and a discrete latent space representation 

● The latent space is defined by the set of vectors 𝑒𝑖 𝑖∈[1,𝐾] that are learned
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Another VAE-inspired method: VQ-VAE

● The encoder outputs a matrix of size [𝑀 ×𝑀 × 𝐷] corresponding to [𝑀 ×𝑀]
vectors of size 𝐷



48

Another VAE-inspired method: VQ-VAE

● Each encoder vector is compared with vectors in latent space, and the number of 
the closest vector is assigned in discrete space 𝑞(𝑧|𝑥)
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Another VAE-inspired method: VQ-VAE

● The decoder input corresponds to a matrix of size [𝑀 ×𝑀] where each component 
is a vector of size 𝐷

● Each component corresponds to a vector in latent space chosen according to its 
number in discrete space 𝑞(𝑧|𝑥)



50

Another VAE-inspired method: VQ-VAE

● The loss function to be minimized is as follows

𝑠𝑔[∙]: Identity function in forward and null function in backward
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That’s all folks
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Advantages of auto-encoders

► Data representation


