

Image Processing and Analysis

Generative models Variational Auto-Encoder

olivier.bernard@insa-lyon.fr

How to generate synthetic faces?

By modeling the corresponding distribution $x \sim p_{\theta}(x)$!

Are classical distributions still relevant ?

How to model complex distributions?

The image space (modeled by p(x)) is projected into a more efficient hidden representation space, called the latent space (modeled by p(z))

Face distribution

An obsession: mastering the latent space!

Latent space $z_i \in \mathbb{R}^K$

For what purpose?

An obsession: mastering the latent space!

Latent space $z_i \in \mathbb{R}^K$

Auto-encoders

Projection into a more efficient and lower-dimensional representation space

Input space $\ x_i \in \mathbb{R}^{N imes M}$

How to have a relevant representation space?

Output space $\ \hat{x}_i \in \mathbb{R}^{N imes M}$

Standard architectures

Example of a cost function

$$egin{aligned} & \log x = \|x - \hat{x}\|^2 \end{aligned}$$

Encoder / Decoder modeled by neural networks (convolutional)

$$igl| \log = \|x-f(e(x))\|^2$$

Autoencoder? What for?

Generative models

Need to better control the structure of the latent space

Generative model with better properties thanks to the variational framework

Generative model with variational framework

Linear interpolation in the latent space

$$t\cdot z_0+(1-t)\cdot z_7, \qquad 0\leq t\leq 1$$

First component

Variational Auto-Encoder

The entire mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html

Reinforcement of a structured latent space

→ Through a probabilistic framework

→ By imposing continuity constraints

→ By imposing completeness constraints

Probabilistic framework: continuity

→ Introduction of local regularizations of the latent space

→ Each input data x is encoded as a Gaussian distribution $q_x(z) = N(\mu_x, diag(\sigma_x))$

Probabilistic framework: continuity

→ Sampling from a local region of the latent space produces similar results

points

- Probabilistic framework: completeness
 - Encourage that every reconstructed point in the latent space produces consistent results

Latent space $Z \in \mathbb{R}^{K}$

- Probabilistic framework: completeness
 - → Impose that all distributions $q_x(z)$ are close to a standard normal distribution N(0, I)
 - \rightarrow Variances close to 1 => limits the generation of point distributions
 - → Means close to 0 => encourages distributions that are close to each other

Probabilistic framework: continuity & completeness

Architecture of VAEs

Variational Auto-Encoder

Mathematical formulation

How to generate synthetic faces?

- → Let $p(\cdot)$ be the distribution that represents human faces
- We want to find a model f that generates samples x whose probability p(x) is maximal

$$f^* = rg \max_f \ p(x)$$
 with x generated by a model $f(\cdot)$

In this case, the generated samples resemble human faces from the training dataset

Modeling a hidden variable z to reduce the complexity of the problem

→ Reminder of Bayes' theorem

Mathematical formulation

 \rightarrow The distribution p(z|x) is generally complex to model

Approximation of p(z|x) by a simple and computable function q(z|x) that will allow efficient sampling of z

Variational inference

- → Statistical approximation technique for complex distributions, here p(z|x)
- ➔ Definition of a parameterized family of distributions
 - \blacktriangleright e.g., family of Gaussians with parameters μ_x , σ_x modeled by functions to be determined
- → Find the best approximation of the target distribution in this family
- The best element of the family minimizes an approximation error measure between two distributions
 - Kullback-Leibler divergence function is often used

Kullback-Leibler divergence function

→ Distance measure between two distributions via relative entropy

$$D_{KL}\left(p\parallel q
ight)=\int p(x)\cdot\logigg(rac{p(x)}{q(x)}igg)dx$$

→ D_{KL} is a measure that is always positive $D_{KL}(p||q) \ge 0$

→ D_{KL} is a nonsymmetric measure $D_{KL}(p||q) \neq D_{KL}(q||p)$

- For the purple distribution, the distance AB is large
- For the green distribution, the distance AB is moderate
- The notion of distance differs depending on the distributions

Variational inference

- → p(z|x) is approximated by a family of functions q(z|x)
- \rightarrow q(z|x) is modeled by a Gaussian distribution aligned with the axes

 $q(z|x) = \mathcal{N}\left(\mu_x, \sigma_x
ight) = \mathcal{N}\left(g(x), diag(h(x))
ight)$

- → g(x) and h(x) are functions that represent the means μ_x and the covariances σ_x
- → Measure of approximation between the two distributions p(z|x) et q(z|x)

$$(g^*,h^*) = rgmin_{(g,h)} \; D_{KL} \left(q(z|x) \parallel p(z|x)
ight)$$

$$q(z|x)$$
 $(x|z)$ $(x|z)$

Variational inference

→ By playing with the expressions of p(x), it is possible to find the following definitions and relationships

$$\log p(x) \geq \int q(z|x) \log\left(rac{p(x,z)}{q(z|x)}
ight) dz$$
 $log \ p(x) \geq ELBO$

$$log \; p(x) = ELBO + D_{KL} \left(q(z|x) \parallel p(z|x)
ight)$$

 \rightarrow ELBO is a lower bound of $\log p(x)$

 \rightarrow Maximizing ELBO amounts to maximizing $\log p(x)$

→ If we maximize $\log p(x)$, then we minimize $D_{KL}(q(z|x) || p(z|x))$

Optimization process

- → $g(\cdot)$ et $h(\cdot)$ are modelled by an encoder
- \rightarrow $f(\cdot)$ is modelled by a decoder

Interpretation of the loss function

 $ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \,+\, lpha \|x-f(z)\|^2$

Interpretation of the loss function

 $ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \,+\, lpha \|x-f(z)\|^2$

 $\rightarrow \mathcal{N}(g(x), h(x))$ imposes a local *continuity* constraint

→ $\mathcal{N}(\cdot, \mathcal{N}(0, I))$ imposes a global *completeness* constraint

Reparameterization trick

Practical application

The obsession is to master the latent space !

VAE latent space regularization based on image attributes

- Structured latent space generation
 - Specific attributes with continuous values must be coded according to specific dimensions

Structuring latent space

- Attribute regularization term
 - What is an attribute ?
 - → Measurement performed in image space to characterize a target object
 - → E.g.: handwritten digits (MNIST database)
 - Attributes: line thickness, inclination, length, area, ...
 - ➔ Pre-training image attribute measurements used as input data

- Attribute regularization term
 - During the learning phase
 - → Computation for each attribute *a* of a distance matrix $D_a \in \mathbb{R}^{m \times m}$ from the *m* images $\{x_i\}_{1 \le i \le m}$ present in the current batch

$$D_a(i,j) = a(x_i) - a(x_j)$$
 with $i,j \in [0,m)$

→ Computation for each attribute r of a distance matrix $D_r \in \mathbb{R}^{m \times m}$ from the m latent vector $\{z_i\}_{1 \le i \le m}$ corresponding to the images in the current batch

$$D_r(i,j) = z_i^r - z_j^r$$
 with $i,j \in [0,m)$

➔ Introduction of the following loss term

$$\mathcal{L}_{r,a} = MAE\left(anh\left(D_r
ight) - sign\left(D_a
ight)
ight)$$

Generate a latent space structured according to attributes

Generate a latent space structured according to attributes

• Sampling of the structured latent space

Generate a latent space structured according to attributes

- Sampling of the structured latent space
 - → Specific attributes: surface, length, thickness, inclination, width, height
 - → Each column corresponds to a traverse along a regularized dimension

Application example: representation of cardiac shapes

- Generation of a latent space structured according to the following attributes
 - → Left ventricular (LV) cavity: surface area, length, basal width, orientation
 - ➔ Myocardial surface
 - → Epicardial wall center

Variational auto-encoders with vector quantization

Another VAE-inspired method: VQ-VAE

• Joint learning of an auto-encoder and a discrete latent space representation

• The latent space is defined by the set of vectors $\{e_i\}_{i \in [1,K]}$ that are learned

Another VAE-inspired method: VQ-VAE

• The encoder outputs a matrix of size [$M \times M \times D$] corresponding to [$M \times M$] vectors of size D

 Each encoder vector is compared with vectors in latent space, and the number of the closest vector is assigned in discrete space q(z|x)

Another VAE-inspired method: VQ-VAE

- The decoder input corresponds to a matrix of size [*M* × *M*] where each component is a vector of size *D*
- Each component corresponds to a vector in latent space chosen according to its number in discrete space q(z|x)

• The loss function to be minimized is as follows

 $\mathcal{L} = log\left(p(x|z_q)
ight) + \| sg\left[z_e(x)
ight] - e \|_2 + eta \| z_e(x) - sg\left[e
ight] \|_2$

 $sg[\cdot]$: Identity function in forward and null function in backward

That's all folks

Data representation

Vecteur d'entrée

Cas pathologiques