

Image Processing and Analysis

Attention models Transformers

olivier.bernard@insa-lyon.fr

nicolas.thome@sorbonne-universite.fr

1

NLP: Natural Language Processing

Enable machines to understand, interpret, and generate natural language effectively

Developed for tasks such as

- Automatic translation
- Speech comprehension
- Text generation
- Computer code generation
- Known algorithms
 - BERT
 - GPT 3, 4
 - Chat-GPT

explain quantum theory to a child in the style of snoop dogg

Yo, little homie, let me break it down for you Quantum theory, it's a crazy thing, it's true See, the world is made up of tiny, tiny particles That are always moving, and changing, and actin' wild

These particles, they don't always behave like we think Sometimes they're waves, and sometimes they're points, it's a trip They can be in two places at once, and they can be in two states It's a mind-blowing concept, but that's the quantum fate

So don't be scared, little homie, it's all good Quantum theory, it's just the way the world works, it's understood It's a wild ride, but it's a cool one too Quantum theory, it's the way the world does what it do.

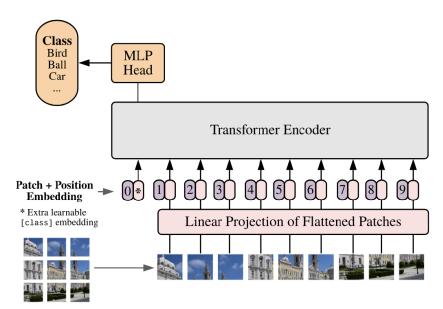
• [...]

Enable machines to understand, analyze, and generate images efficiently

State-of-the-art algorithms

- Classification
- Segmentation
- Segmentation + time
- Tracking
- Image generation

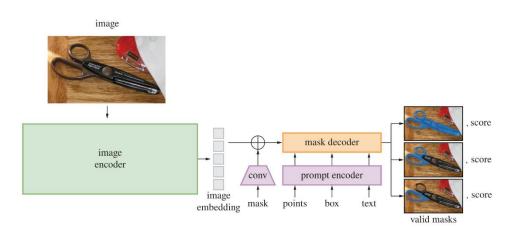
Vision Transformer - 2020



Enable machines to understand, analyze, and generate images efficiently

State-of-the-art algorithms

- Classification
- Segmentation
- Segmentation + time
- Tracking
- Image generation

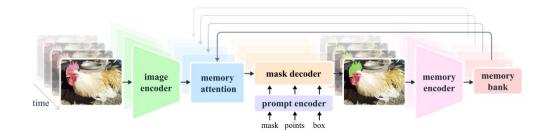


SAM (Segment Anything) - 2024

Enable machines to understand, analyze, and generate images efficiently

State-of-the-art algorithms

- Classification
- Segmentation
- Segmentation + time
- Tracking
- Image generation



SAM2 - 2024

Enable machines to understand, analyze, and generate images efficiently

State-of-the-art algorithms

- Classification
- Segmentation
- Segmentation + time
- Tracking
- Image generation

initialized tracks contractive updates tracks $\hat{P}^{(m)}_{(T,N,2)}$ $\hat{P}^{(m)}_{(T,N,2)}$ $\hat{Q}^{(m)}_{(T,N,d)}$ $\hat{P}^{(m)}_{(T,N,d)}$ $\hat{$

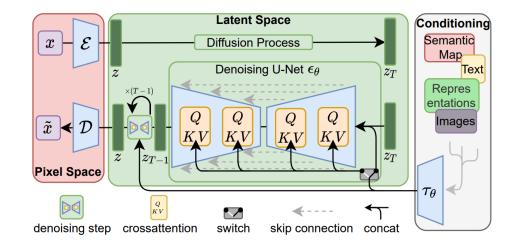
CoTracker - 2024

Enable machines to understand, analyze, and generate images efficiently

State-of-the-art algorithms

- Classification
- Segmentation
- Segmentation + time
- Tracking
- Image generation

Latent diffusion model - 2023

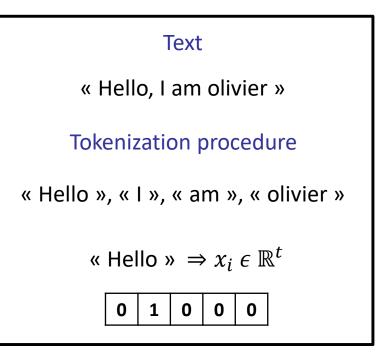


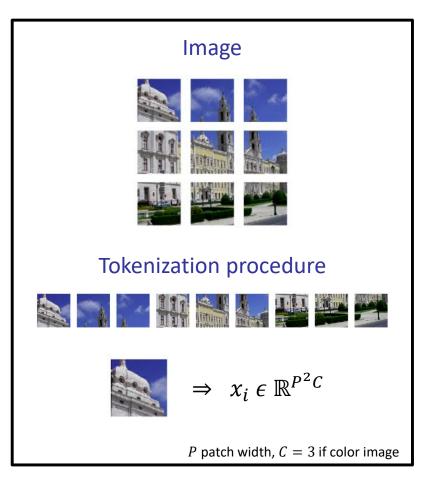
Transformers

Tokens

The input data is structured as tokens

Text: token = word of a sentence
 Image: token = patch of an image

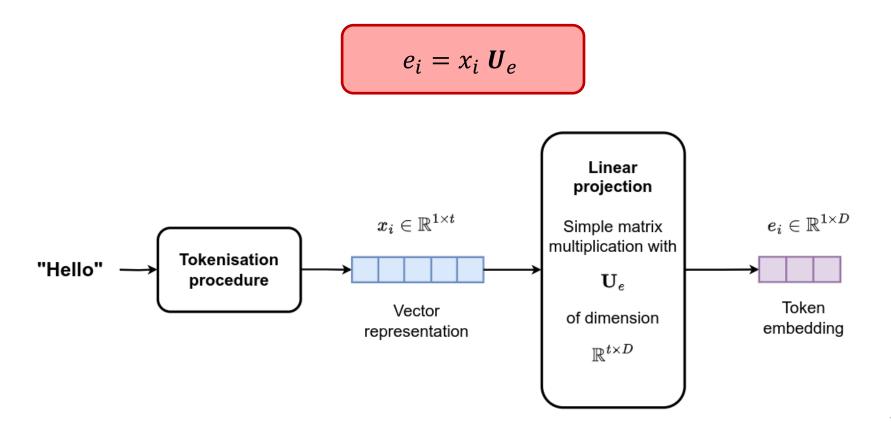




Creation of a representation (or *embedding*) of the tokens

➔ Simple linear projection

 \rightarrow Multiplication by a learnable representation matrix U_e

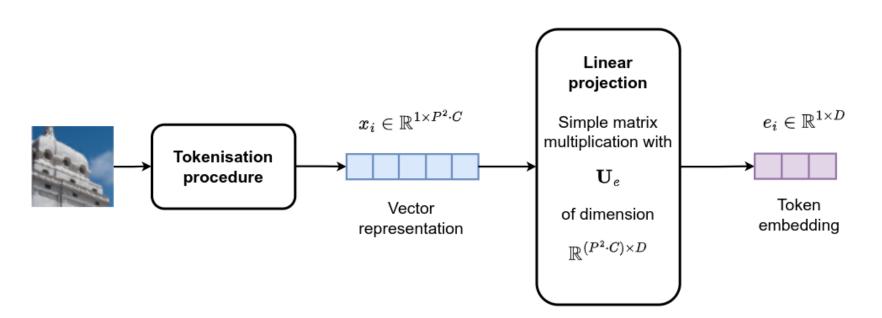


Creation of a representation (or *embedding*) of the tokens

➔ Simple linear projection

 \rightarrow Multiplication by a learnable representation matrix U_e

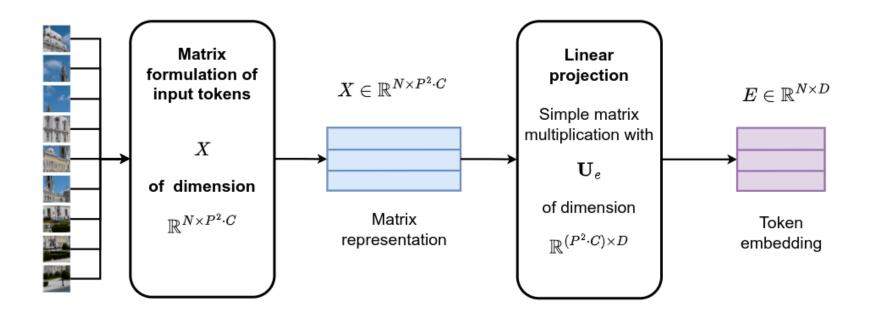
$$e_i = x_i \boldsymbol{U}_e$$



 \blacktriangleright Learning a representation matrix U_e shared by each token

Matrix formulation

$$E = X \boldsymbol{U}_e$$



- Positional encoding
 - Sentence / image: a set of independent tokens
 - Loss of structural information from the input data

Recovery of structure: positional encoding (PE: positional embedding)

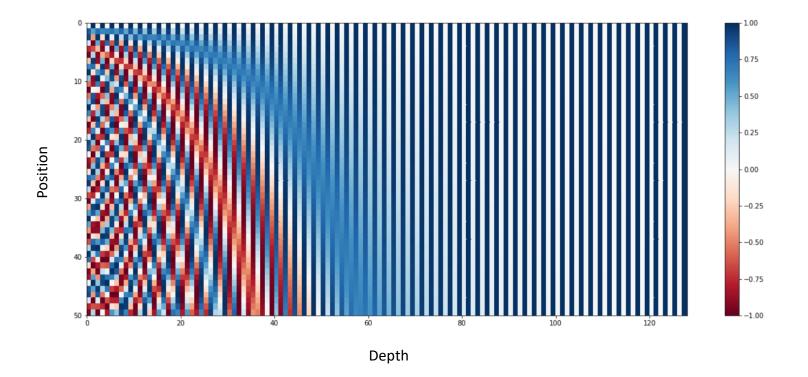
- \rightarrow Correspondence between the position of token *t* and a vector $p_t \in \mathbb{R}^{1 \times D}$
- → Classical encoding: sinusoidal function

$$p_t \in \mathbb{R}^{1 \times D}$$

$$p_t = \left[\sin(\omega_1 t), \cos(\omega_1 t), \cdots, \sin(\omega_{D/2} t), \cos(\omega_{D/2} t) \right]$$

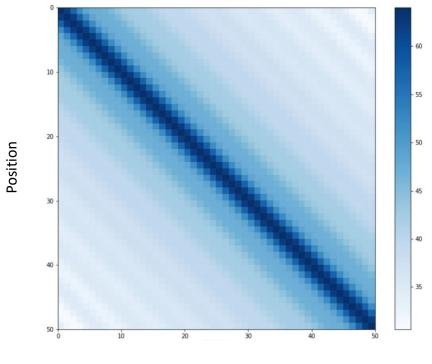
$$\omega_k = \frac{1}{10000^{2k/D}}$$

- Sinusoidal positional encoding
 - \rightarrow Unique vector p_t for each position t
 - → $p_t(i) \in [-1,1]$: Intrinsic normalization of values



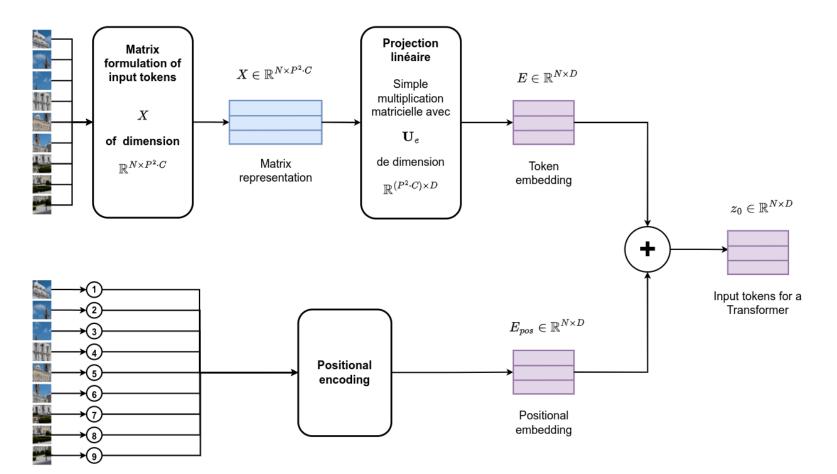
Number of tokens = 50, dimension D of each token = 128

- Sinusoidal positional encoding
 - Intrinsic modeling of the relative position of tokens
 - ▶ Position similarity matrix: $K = P \cdot P^t$



Position

- Final representation
 - Final tokens = sum of token and position representations
 - \rightarrow Only the matrix U_e is to be learned for this phase



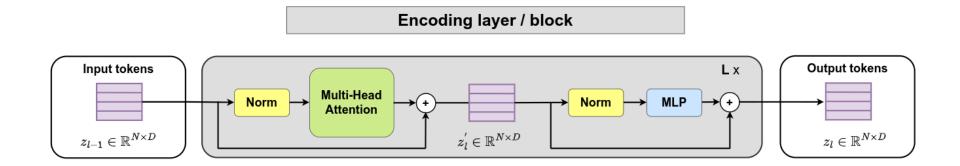
Transformers

Encoding blocks

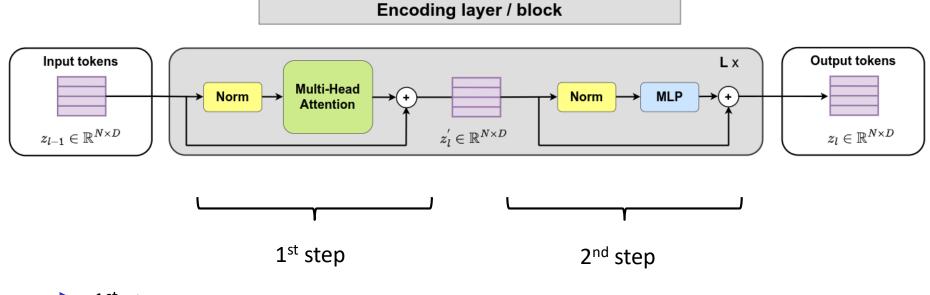
Encoder

➔ Corresponds to N encoding blocks

- Input: A token representation
- Output: A new token representation tailored to the target is being optimized



Transformer: information encoding



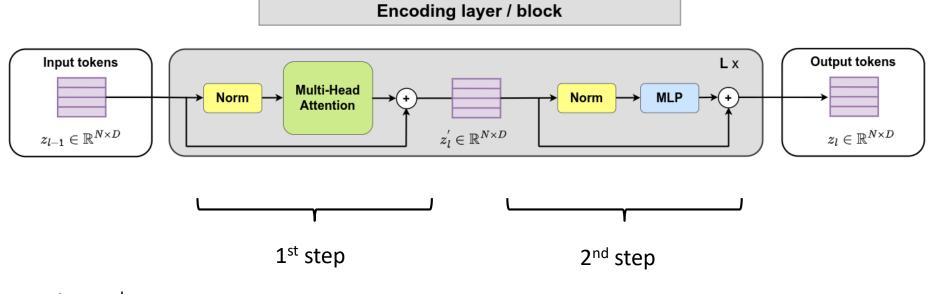
1st step

- Computation of attention maps between tokens
- → Residual connection 1) Against vanishing gradient

2) Do not forget the positional representation

$$z_l' = MHA(LN(z_{l-1})) + z_{l-1}$$

Transformer: information encoding



2nd step

→ Introduction of nonlinearities to generate relevant information

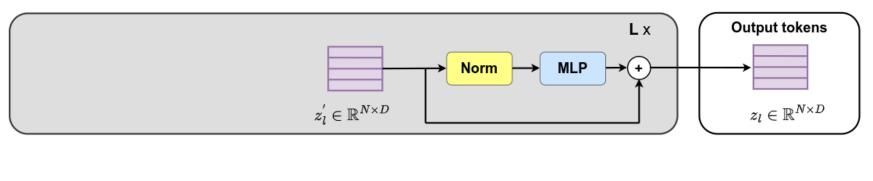
Residual connection 1) Against vanishing gradient

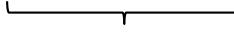
2) Do not forget the positional representation

$$z_l = MLP(LN(z_l')) + z_l'$$

Focus on the 2nd step

Encoding layer / block



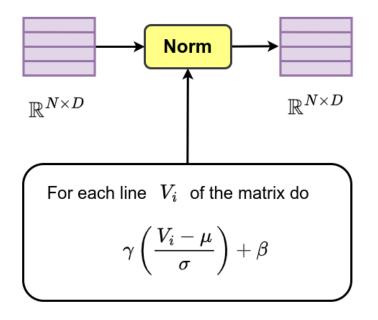


2nd step

Normalization

→ Controls the dynamics of the token values before each key step

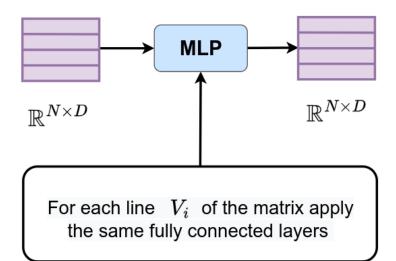
- μ, σ : computed over all the tokens corresponding to an image
- γ, β : parameters to be learned

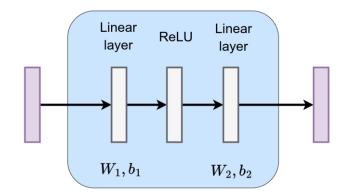


MLP

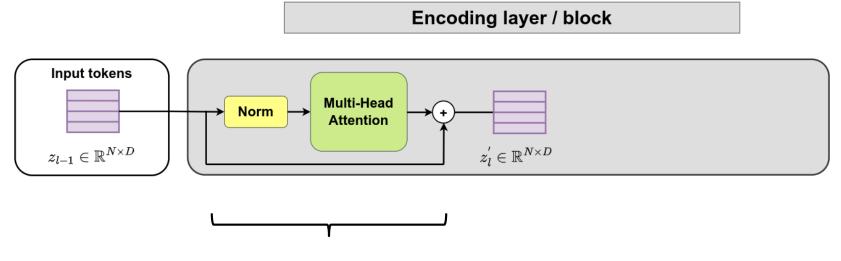
- → Introduces non-linearity
- ➔ Enables the generation of relevant information

$$z_l^* = LN(z_l')$$
$$MLP(z_l^*) = max(0, z_l^*W_1 + b_1)W_2 + b_2$$





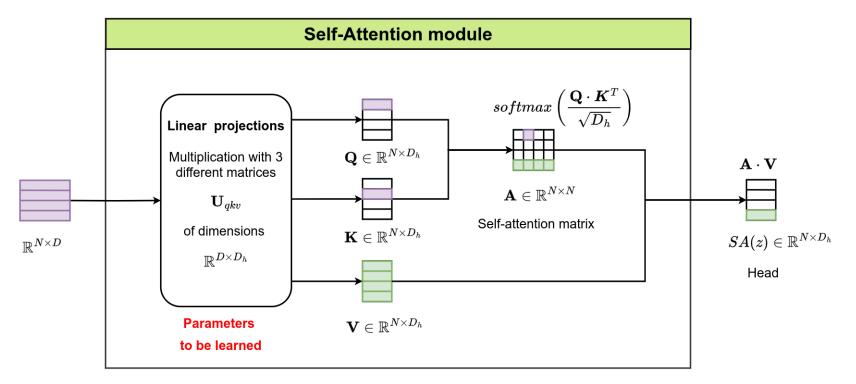
Focus on the 1st step



1st step

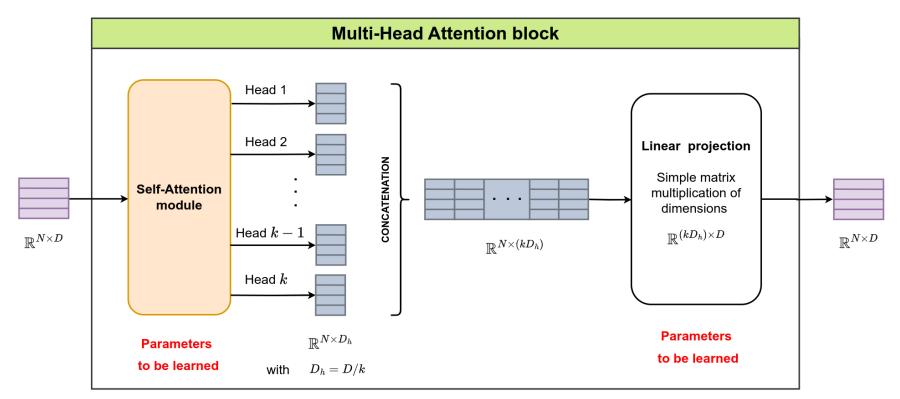
Self-attention module

- \rightarrow Management of attention maps A through Q (query), K (key), V (values) matrices
- → Softmax applied row-wise to the matrix A to normalize the weights that will weight the row vectors of V



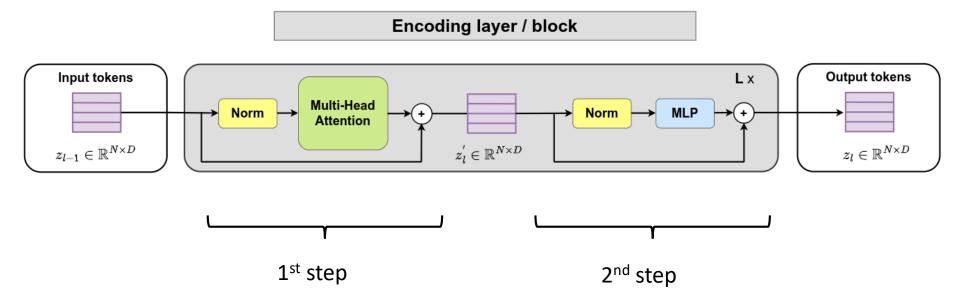
Transformer: information encoding

- Multi-Head Attention: Multi-head attention block
 - \rightarrow Generation of k heads from different self-attention modules
 - → Equivalent to the concept of feature maps in CNNs
 - Linear projection to mix the information from different heads and return to the initial token dimensions



In summary

- → 1st step: generation of information through attention between tokens
- → 2nd step: generation of relevant information through non-linearity



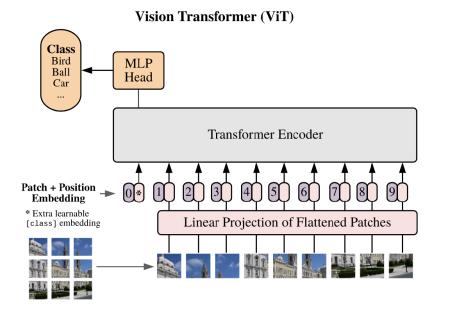
Transformers

Classification method

VIT: reference algorithm

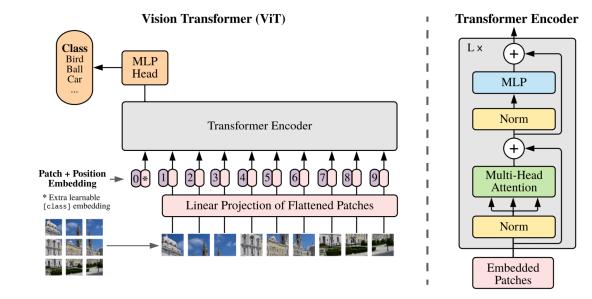
- → Trained on JFT (300 million images)
- → Introduction of the concept of *class token*

Learning a "pooling" operation with respect to visual tokens



gif animation

VIT: reference algorithm



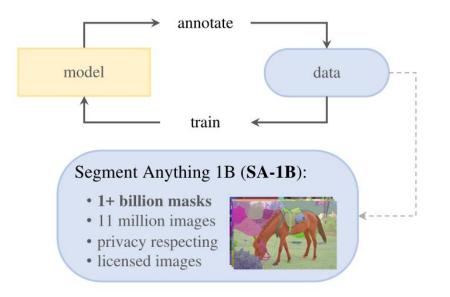
Models	Layers / blocks	Hidden size D	MLP size	Heads	Parameters
ViT-Base	12	768	3072	12	86 M
ViT-Large	24	1024	4096	16	307 M
ViT-Huge	32	1280	5120	16	632 M

Transformers

Segmentation model

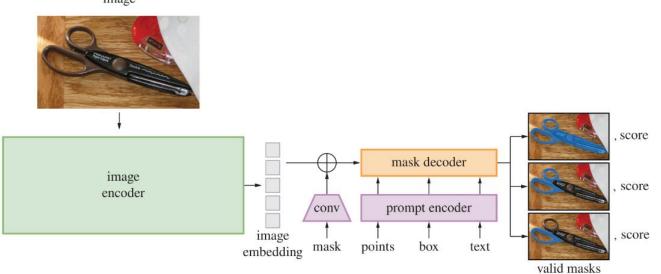
SAM: Segment Anything

- → Trained on SA-1B (11 million images, 1 billion masks)
- → 2D images of natural scenes, Minimum side size: 1500px



SAM: Segment Anything

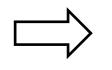
- → Relatively simple architecture
- ➔ Interactive segmentation process
- → Integrates the principle of segmentation ambiguity based on initialization



image

- SAM: Segment Anything
 - ➔ Image encoder
 - Input images resized to 1024 x 1014 px
 - Architecture: ViT-H/16 (token = patch of size 16 x 16 px)
 - Hidden size D: 256

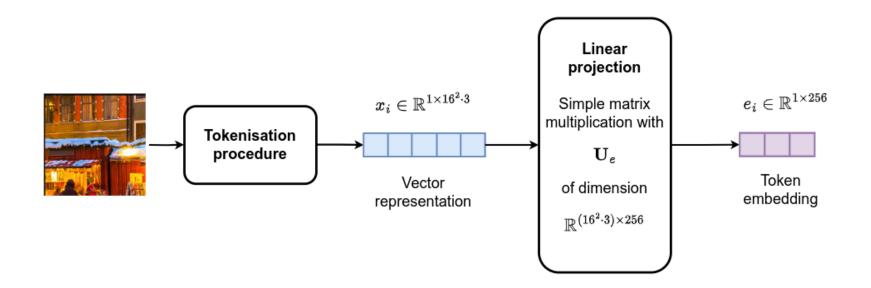
64 x 64 patch of size 16 x 16 px



16 px

1024 px

- SAM: Segment Anything
 - ➔ Image encoder
 - Input images resized to 1024 x 1014 px
 - Architecture: ViT-H/16 (token = patch of size 16 x 16 px)
 - Hidden size D: 256



- SAM: Segment Anything
 - ➔ Prompt encoder
 - Several possible prompts: points, bounding boxes, text
 - Hidden size D: 256

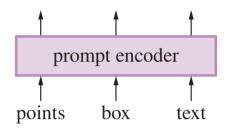
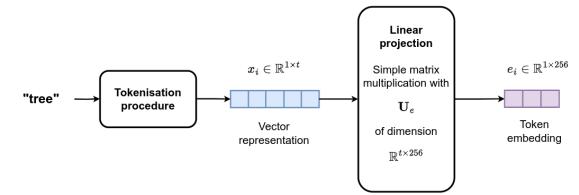
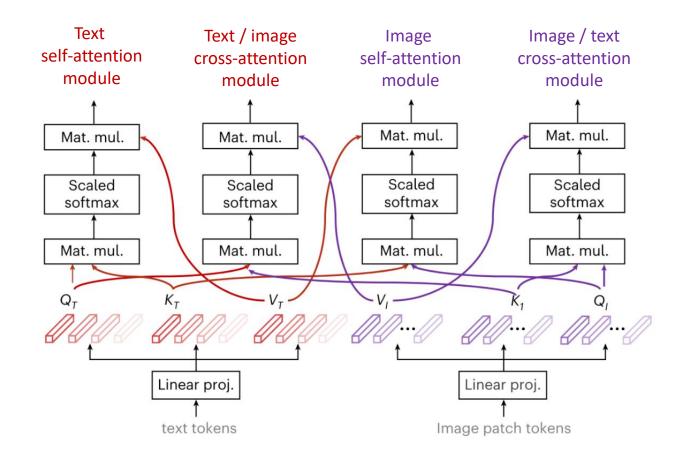


Illustration for the text encoder

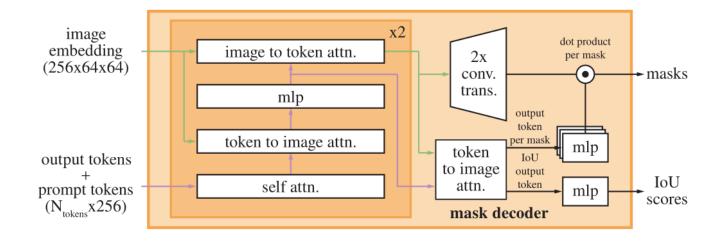


SAM: Segment Anything

- Mask decoder
 - Uses the cross-attention principle

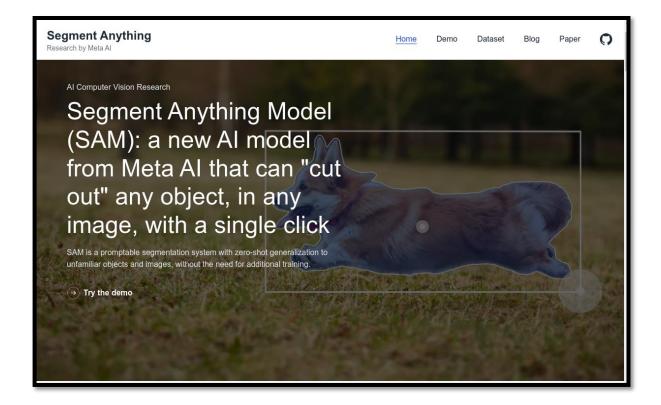


- SAM: Segment Anything
 - Mask decoder
 - Integration of a class token (output token)



SAM: Segment Anything

- Link to demo
- → <u>https://segment-anything.com/</u>



That's all folks