

Image Processing and Analysis

Generative models Diffusion model

olivier.bernard@insa-lyon.fr

What is the purpose of diffusion models?

- Best current methods for synthetic image generation
- Allows generating images in a conditioned form
- Many software solutions, such as Midjourney, DALL-E

An Asian girl in ancient coarse linen clothes rides a giant panda and carries a wooden cage. A chubby little girl with two buns walks on the snow. High-precision clothing texture, real tactile skin, foggy white tone, low saturation, retro film texture, tranquil atmosphere, minimalism, long-range view, telephoto lens

What is the purpose of diffusion models?

- Best current methods for synthetic image generation
- Allows generating images in a conditioned form
- Many software solutions, such as Midjourney, DALL-E

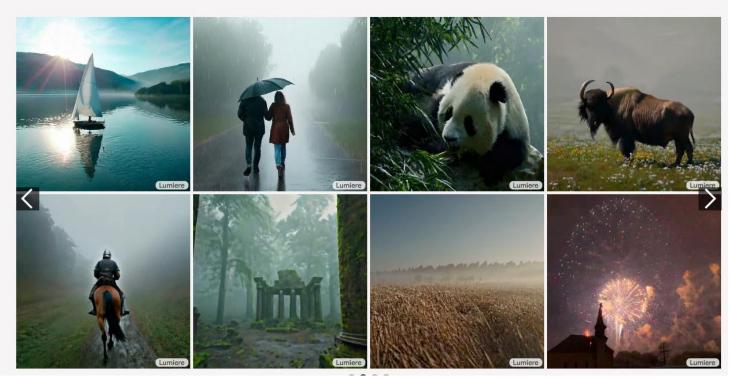
A digital artwork depicting the Buddha's head, intricately designed with green trees growing from it and vines surrounding its face. The background is an enchanted forest filled with ancient ruins, creating a mystical atmosphere. In front of the Buddha's head lies a tranquil river that reflects his serene expression. This scene embodies peace amidst chaos in nature

Recent extensions for video synthesis

https://lumiere-video.github.io/#section_image_to_video

Text-to-Video

* Hover over the video to see the input prompt.



What is the purpose of diffusion models?

Recent extensions for video synthesis

https://lumiere-video.github.io/#section_image_to_video

Image-to-Video

* Hover over the video to see the input image and prompt.

Family of diffusion networks

Diffusion models

Score-based methods

Normalizing flow methods

The denoising diffusion probabilistic models

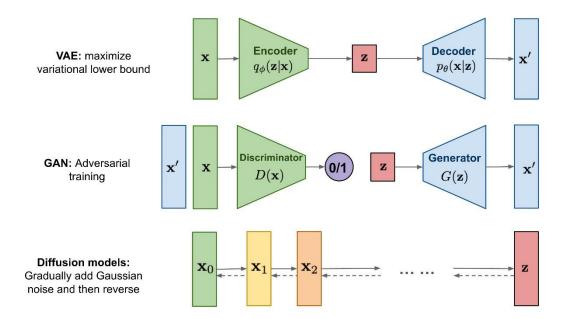
DDPM

All the mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

Key characteristics

→ Belongs to the family of generative models (like VAEs)

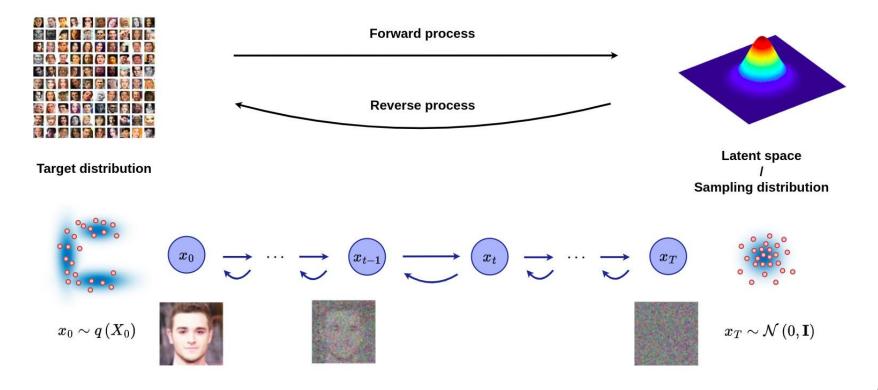


Based on the concept of a Markov chain

Mathematical model used to describe a system that evolves randomly between different states, following certain probability rules

Key characteristics

- Define a Markov chain of diffusion steps to slowly add random noise to the data
- The model then learns to reverse the diffusion process to construct data samples from the noise



Bayes' theorem

$$egin{aligned} q(x_t \mid x_{t-1}) &= rac{q(x_{t-1} \mid x_t) \, q(x_t)}{q(x_{t-1})} \ q(x_{t-1} \mid x_t) &= rac{q(x_t \mid x_{t-1}) \, q(x_{t-1})}{q(x_t)} \end{aligned}$$

$$egin{aligned} q(x_0, x_1, \cdots, x_T) &= q(x_{0:T}) \ q(x_0) &= \int q(x_0, x_1, \cdots, x_T) \, dx_1 \, \cdots \, dx_T \ q(x_0) &= \int q(x_{0:T}) \, dx_{1:T} \end{aligned}$$

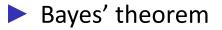
Theorem of conditional probabilities

$$egin{aligned} q(x_{t-1},x_t) &= q(x_t \mid x_{t-1})q(x_{t-1}) \ q(x_{1:T} \mid x_0) &= q(x_T \mid x_{0:T-1})q(x_{T-1} \mid x_{0:T-2}) \dots q(x_1 \mid x_0) \end{aligned}$$

The probability of each event depends only on the state reached during the previous event

Theorem of conditional probabilities

$$egin{aligned} q(x_T \mid x_{0:T-1}) &= q(x_T \mid x_{T-1}) \ q(x_{1:T} \mid x_0) &= \prod_{t=1}^T q(x_t \mid x_{t-1}) \end{aligned}$$



$$q(x_t \mid x_{t-1}) = q(x_t \mid x_{t-1}, x_0) = rac{q(x_{t-1} \mid x_t, x_0) \, q(x_t \mid x_0)}{q(x_{t-1} \mid x_0)}$$

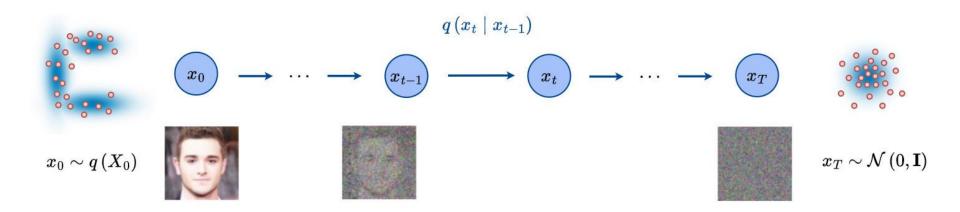
Joint distribution

$$p_{ heta}(x_{0:T}) = p_{ heta}(x_T) \prod_{t=1}^T p_{ heta}(x_{t-1} \mid x_t)$$

DDPM

Forward diffusion process

A procedure in which a small amount of Gaussian noise is added to the initial sample x_0 , producing a sequence of noisy samples x_1, \dots, x_T



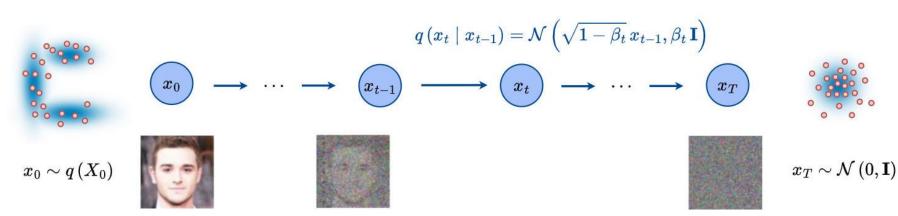
 $\blacktriangleright x_0$ is a sample drawn from a real data distribution $x_0 \sim q(X_0)$

 $q(x_t|x_{t-1})$ models the probability of having the state x_t given the state x_{t-1}

The forward process of a DDPM is a Markov chain

- The prediction at step t depends only on the state at step t 1, which gradually adds Gaussian noise to the data x_0
- ▶ The complete process is modeled by : $q(x_{1:T} \mid x_0) = \prod_{t=1}^{I} q(x_t \mid x_{t-1})$
- The conditional probability can be effectively modeled by

$$q\left(x_{t} \mid x_{t-1}
ight) = \mathcal{N}\left(\left(\sqrt{1-eta_{t}}
ight)x_{t-1},eta_{t}\,\mathbf{I}
ight)$$



• How to define the variance β_t ?

with
$$\bar{lpha}_t = rac{f(t)}{f(0)}$$
 and $f(t) = cos\left(rac{t}{T} + s}{1 + s} \cdot rac{\pi}{2}
ight)^2$

In this case

$$egin{aligned} q\left(x_t \mid x_{t-1}
ight) = \mathcal{N}\left(\left(\sqrt{1-eta_t}
ight)x_{t-1},eta_t\,\mathbf{I}
ight) \end{aligned}$$

$$egin{array}{lll} ext{if} & eta_t=0, & ext{then} & q(x_t\mid x_{t-1})=x_{t-1} \ ext{if} & eta_t=1, & ext{then} & q(x_t\mid x_{t-1})=\mathcal{N}(0,\mathbf{I}) \end{array}$$

Forward diffusion process

Conditional probability: important relation

→ Using the reparameterization trick

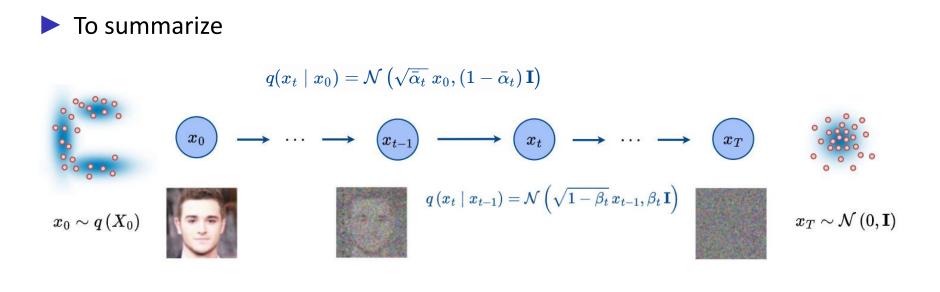
$$egin{aligned} q(x_t \mid x_{t-1}) &= \mathcal{N}\left(\sqrt{1-eta_t}\,x_{t-1},eta_t\,\mathbf{I}
ight) \ x_t &= \sqrt{1-eta_t}\,x_{t-1} + \sqrt{eta_t}\,\epsilon_{t-1} & ext{with} & \epsilon_{t-1} = \mathcal{N}\left(0,\mathbf{I}
ight) \end{aligned}$$

→ One can demonstrate the following relation

$$x_t = \sqrt{ar{lpha}_t} \, x_0 + \sqrt{1 - ar{lpha}_t} \, \epsilon_t$$

$$q(x_t \mid x_0) = \mathcal{N}\left(\sqrt{ar{lpha}_t}\,x_0, (1-ar{lpha}_t)\,\mathbf{I}
ight)$$

with
$$lpha_t = 1 - eta_t$$
 $ar lpha_t = \prod_{k=1}^t lpha_k$



$$q\left(x_{t} \mid x_{t-1}
ight) = \mathcal{N}\left(\left(\sqrt{1-eta_{t}}
ight)x_{t-1},eta_{t}\,\mathbf{I}
ight)$$

$$egin{array}{lll} ext{if} & eta_t=0, & ext{then} & q(x_t\mid x_{t-1})=x_{t-1} \ ext{if} & eta_t=1, & ext{then} & q(x_t\mid x_{t-1})=\mathcal{N}(0,\mathbf{I}) \end{array}$$

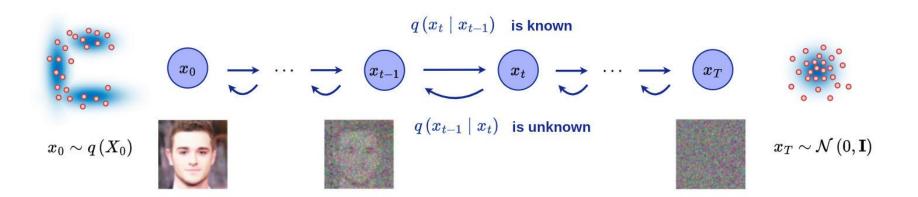
$$q(x_t \mid x_0) = \mathcal{N}\left(\sqrt{ar{lpha}_t}\,x_0, (1-ar{lpha}_t)\,\mathbf{I}
ight)$$

with
$$lpha_t = 1 - eta_t$$
 and $ar lpha_t = \prod_{k=1}^t lpha_k$

DDPM

Reverse process

If we are able to reverse the diffusion process from $q(x_{t-1}|x_t)$, then we can generate a sample x_0 from Gaussian noise $x_T \sim N(0, I)$

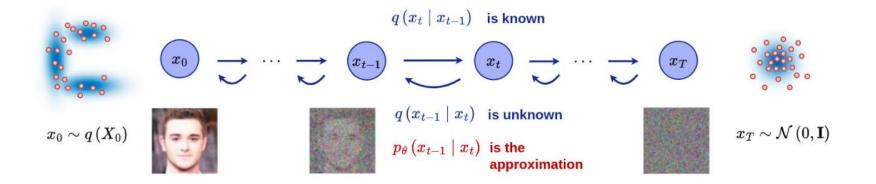


Thanks to Bayes' theorem

$$q(x_{t-1} \mid x_t) = rac{q(x_t \mid x_{t-1})\,q(x_{t-1})}{q(x_t)}$$

Since $q(x_t)$ is unknown, $q(x_{t-1}|x_t)$ is intractable

We will train a model $p_{\theta}(x_{t-1}|x_t)$ to approximate $q(x_{t-1}|x_t)$ in order to execute the reverse diffusion process



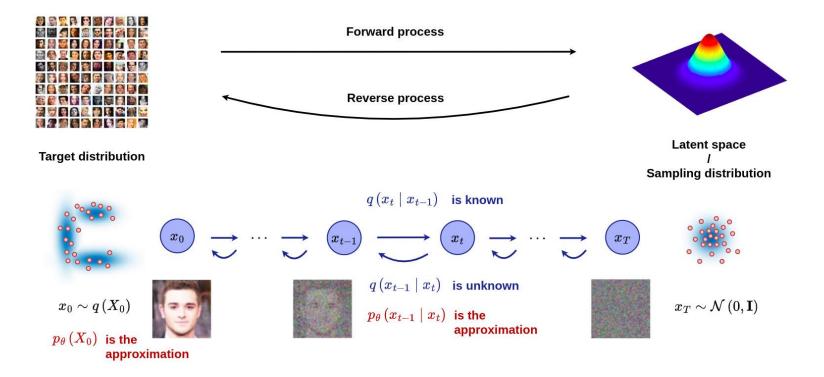
► Gaussian assumption $p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t,t),\Sigma_{ heta}(x_t,t))$

Modeling the entire reverse process

$$p_ heta(x_{0:T}) = p_ heta(x_T) \prod_{t=1}^T p_ heta(x_{t-1} \mid x_t)$$

Reverse process

To summarize



➔ Model to learn

→ Entire reverse process

$$p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t,t), \Sigma_{ heta}(x_t,t))$$

$$p_ heta(x_{0:T}) = p_ heta(x_T) \, \prod_{t=1}^T p_ heta(x_{t-1} \mid x_t)$$

DDPM

Learning strategy

Minimizing the cross-entropy between q(x₀) and p_θ(x₀) results in the two distributions being as close as possible

$$H(q,p_ heta) = -\int q(x_0)\cdot \log(p_ heta(x_0))\,dx_0 = -\mathbb{E}_{x_0\sim q}\left[\log(p_ heta(x_0))
ight]$$

Rewriting this expression using the marginal theorem

$$egin{aligned} H(q,p_{ heta}) &= -\mathbb{E}_{x_0 \sim q} \left[\log igg(\int p_{ heta}(x_{0:T}) \, d_{x_{1:T}} igg)
ight] \ &= -\mathbb{E}_{x_0 \sim q} \left[\log igg(\int q(x_{1:T} \mid x_0) rac{p_{ heta}(x_{0:T})}{q(x_{1:T} \mid x_0)} \, d_{x_{1:T}} igg)
ight] \ &= -\mathbb{E}_{x_0 \sim q} \left[\log igg(\mathbb{E}_{x_{1:T} \sim q(x_{1:T} \mid x_0)} \left[rac{p_{ heta}(x_{0:T})}{q(x_{1:T} \mid x_0)} \, igg)
ight]
ight] \end{aligned}$$

Jensen's inequality

$$\phi(\mathbb{E}\left[X
ight]) \leq \mathbb{E}\left[\phi(X)
ight]$$

$$\begin{array}{l} \twoheadrightarrow \quad H(q,p_{\theta}) \leq -\mathbb{E}_{x_{0}\sim q} \ \mathbb{E}_{x_{1:T}\sim q(x_{1:T}\mid x_{0})} \left[\log \biggl(\frac{p_{\theta}(x_{0:T})}{q(x_{1:T}\mid x_{0})} \biggr) \right] \\ \leq -\mathbb{E}_{x_{0:T}\sim q(x_{0:T})} \left[\log \biggl(\frac{p_{\theta}(x_{0:T})}{q(x_{1:T}\mid x_{0})} \biggr) \right] \\ \leq \mathbb{E}_{x_{0:T}\sim q(x_{0:T})} \left[\log \biggl(\frac{q(x_{1:T}\mid x_{0})}{p_{\theta}(x_{0:T})} \biggr) \right] \\ \leq \mathcal{L}_{VUB} \end{array}$$

Variational upper bound

$$egin{aligned} \mathcal{L}_{VUB} = \mathbb{E}_{x_{0:T} \sim q(x_{0:T})} \left[\log \left(rac{q(x_{1:T} \mid x_{0})}{p_{ heta}(x_{0:T})}
ight)
ight] \end{aligned}$$

Since $H(q, p_{\theta})$ is positive, minimizing \mathcal{L}_{VUB} is equivalent to minimizing $H(q, p_{\theta})$

• Minimizing \mathcal{L}_{VUB}

$$egin{aligned} \mathcal{L}_{VUB} &= \mathbb{E}_{x_{0:T} \sim q} \left[\log igg(rac{q(x_{T} \mid x_{0})}{p_{ heta}(x_{T})} igg) + \sum_{t=2}^{T} \log igg(rac{q(x_{t-1} \mid x_{t}, x_{0})}{p_{ heta}(x_{t-1} \mid x_{t})} igg) - \log(p_{ heta}(x_{0} \mid x_{1})) igg] \ &= \underbrace{D_{KL} \left(q(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{T}) igg) + \sum_{t=2}^{T} \underbrace{D_{KL} \left(q(x_{t-1} \mid x_{t}, x_{0}) \parallel p_{ heta}(x_{t-1} \mid x_{t}) igg) - \log(p_{ heta}(x_{0} \mid x_{1})) igg] \ &= \underbrace{D_{KL} \left(q(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{T}) igg) + \sum_{t=2}^{T} \underbrace{D_{KL} \left(q(x_{t-1} \mid x_{t}, x_{0}) \parallel p_{ heta}(x_{t-1} \mid x_{t}) igg) - \log(p_{ heta}(x_{0} \mid x_{1})) igg] \ & \underbrace{D_{KL} \left(q(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{T}) igg) + \sum_{t=2}^{T} \underbrace{D_{KL} \left(q(x_{t-1} \mid x_{t}, x_{0}) \parallel p_{ heta}(x_{t-1} \mid x_{t}) igg) - \underbrace{\log(p_{ heta}(x_{0} \mid x_{1})) igg] \ & \underbrace{D_{KL} \left(q(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{0} \mid x_{1}) igg) - \underbrace{D_{KL} \left(q(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{1} \mid x_{0}) \parallel p_{ heta}(x_{1} \mid x_{0}) igg) - \underbrace{D_{KL} \left(q(x_{T} \mid x_{0}) \parallel p_{ heta}(x_{1} \mid x_{0}) \parallel p_{ heta}(x_{0} \mid x_{1}) igg) - \underbrace{D_{KL} \left(q(x_{T} \mid x_{0} \mid x_{0} \mid x_{0} \mid x_{0} \mid x_{0}) \parallel p_{ heta}(x_{0} \mid x_{0}) igg) - \underbrace{D_{KL} \left(q(x_{T} \mid x_{0} \mid$$

The derivation of this expression is described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

• Minimizing \mathcal{L}_{VUB}

- → <u>Remark n°1</u>: Since the sequence $\{\beta_t\}_{t \in [1,T]}$ is chosen in advance, $q(x_T | x_0)$ is deterministic, and \mathcal{L}_T is a constant term that will be ignored in the minimization process
- → <u>Remark n°2:</u> L_0 can be modeled by a specific decoder, or omitted for the sake of simplicity
- → <u>Remark n°3</u>: Using the reparameterization trick, $q(x_{t-1}|x_t, x_0)$ can be reformulated as

$$q(x_{t-1} \mid x_t, x_0) = \mathcal{N}(ilde{\mu}_t(x_t, x_0), ilde{eta}_t \cdot \mathbf{I})$$

with
$$ilde{\mu}_t(x_t, x_0) = rac{1}{\sqrt{lpha_t}} (x_t - rac{1 - lpha_t}{\sqrt{1 - ar lpha_t}} \epsilon_t)$$

 $ilde{eta}_t = rac{1 - ar lpha_{t-1}}{1 - ar lpha_t} \cdot eta_t \qquad ar lpha_t = \prod_{k=1}^t lpha_k \qquad lpha_t = 1 - eta_t$

• Minimizing \mathcal{L}_{VUB}

→ Minimizing \mathcal{L}_{VUB} thus corresponds to minimizing $D_{KL}(q(x_{t-1}|x_t, x_0) || p_{\theta}(x_{t-1}|x_t))$ for all time steps t

with
$$\left\{egin{array}{l} q(x_{t-1} \mid x_t, x_0) = \mathcal{N}(ilde{\mu}_t(x_t, x_0), ilde{eta}_t \cdot \mathbf{I}) \ \ p_ heta(x_{t-1} \mid x_t) = \mathcal{N}(\mu_ heta(x_t, t), \Sigma_ heta(x_t, t)) \end{array}
ight.$$

→ We want to make the two Gaussian distributions $q(x_{t-1}|x_t, x_0)$ and $p_{\theta}(x_{t-1}|x_t)$ as close as possible

ightarrow For the sake of simplicity, we choose $\Sigma_{ heta}(x_t,t) = \sigma_t \, \mathbf{I} = ilde{eta}_t \, \mathbf{I}$

The idea is to focus on the means of the two distributions and train a neural network μ_{θ} to predict $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \epsilon_t \right)$

The loss term \mathcal{L}_{t-1} is revisited to minimize the difference between μ_{θ} and $\tilde{\mu}$

$$\mathcal{L}_{t-1} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}} \left[rac{(1-lpha_t)^2}{2 lpha_t (1-ar lpha_t) ar ar b_t^{-2}} \, \| \epsilon_t - \epsilon_ heta(x_t,t) \|^2
ight]$$

→ This expression can be simplified by ignoring the weighting term, which gives the final loss function to minimize as follows :

$$\mathcal{L}_{t-1}^{simple} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}, t \sim [1,T]} \left[\| \epsilon_t - \epsilon_ heta(x_t,t) \|^2
ight]$$

DDPM

Architecture

Key points

 \rightarrow The goal is to estimate the conditional probability $p_{\theta}(x_{t-1}|x_t)$

$$p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t,t), \Sigma_{ heta}(x_t,t))$$

→ Although the key modeling of diffusion models is the Markov chain, it is possible to directly express x_t as a function of x_0

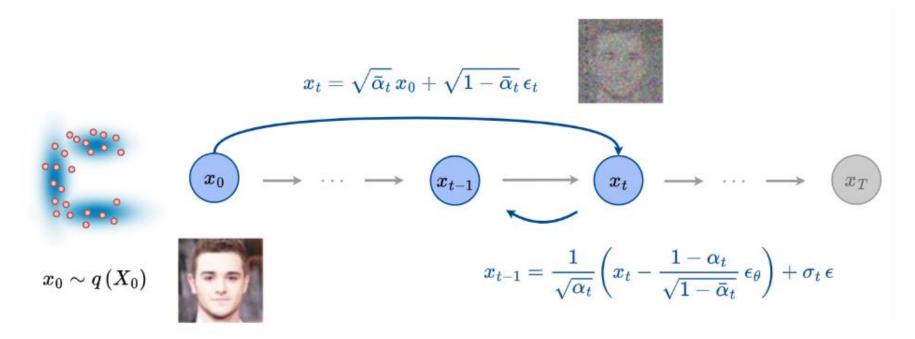
$$egin{aligned} egin{aligned} x_t &= \sqrt{ar{lpha}_t} \, x_0 + \sqrt{1 - ar{lpha}_t} \, \epsilon_t \ egin{aligned} egin{aligned} lpha_t &= 1 - eta_t \ eta_t &= 1 - eta_t \ eta_t &= eta_t \ eta_t &= \prod_{k=1}^t lpha_k \end{aligned} egin{aligned} eta_t &= \mathcal{N}\left(0, \mathbf{I}
ight) \ eta_t &= \prod_{k=1}^t lpha_k \end{aligned}$$

→ The only unknown is the noise $\epsilon_{\theta}(x_t, t)$, which we will estimate using a neural network by minimizing the following loss function

$$\mathcal{L}_{t-1}^{simple} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}, t \sim [1,T]} \left[\| \epsilon_t - \epsilon_ heta(x_t,t) \|^2
ight]$$

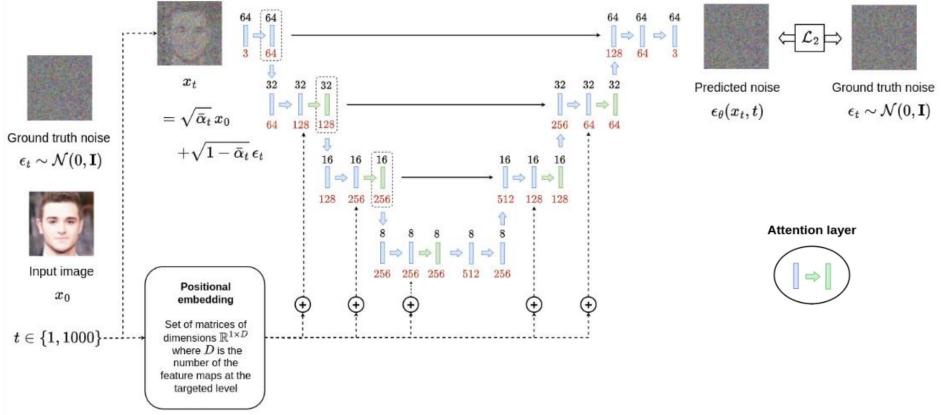
It is therefore possible, at any time step t, to generate a noisy image x_t from x_0 and ϵ_t , which are known, and learn to estimate ϵ_t from x_t

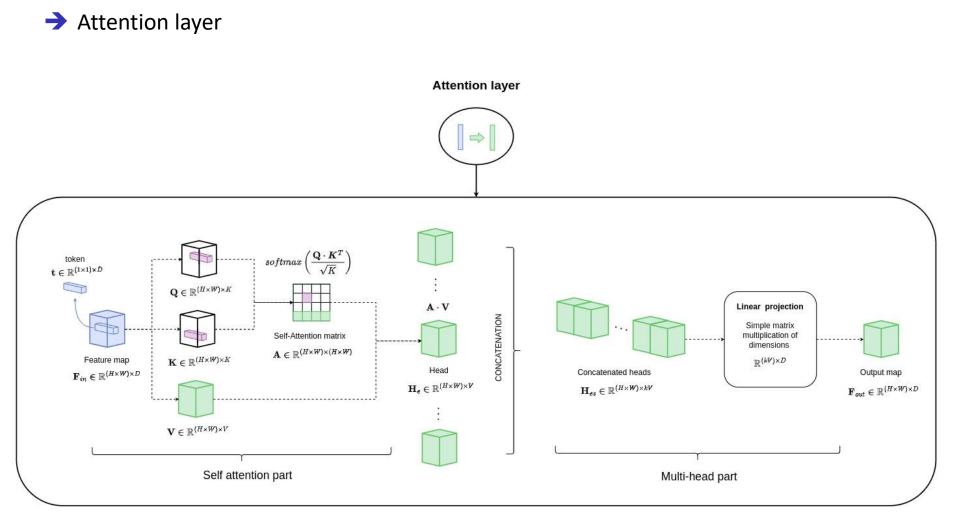
The estimated noise $\epsilon_{\theta}(x_t, t)$ can then be used to recover x_{t-1} from x_t



Standard U-Net with attention layers and position encoding to integrate temporal information

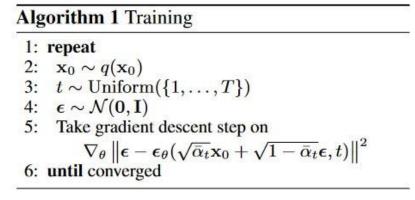
\rightarrow Integration of t is necessary because the added noise varies over time





In summary

➔ Training



→ Inference / generation of a new synthetic image

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

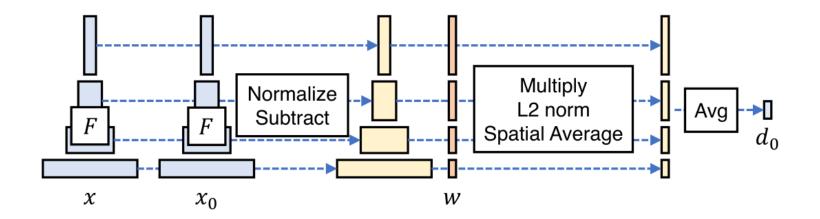
2: for $t = T, ..., 1$ do
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = \mathbf{0}$
4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
5: end for
6: return \mathbf{x}_0

Practical application

Latent diffusion models

Projection of images into a dedicated space before processing

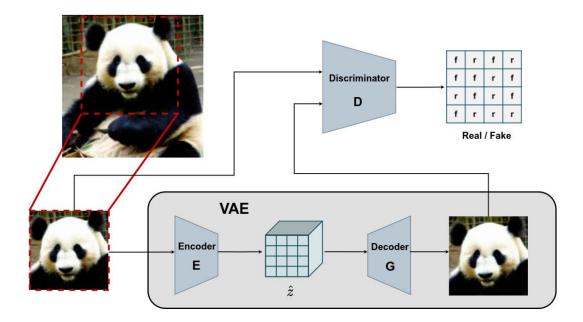
- Using a VAE as input/output to the DDPM to reduce the complexity of the processed images and memory footprint
- Introducing a perceptual loss function to improve the quality of the reconstructed images



 $\begin{bmatrix} x \text{ and } x_0 \text{ are two image patches given as input} \\ F \text{ is a pre-trainer network, such as VGG50} \end{bmatrix}$

Image projection in a dedicated area before processing

→ Implementation of an adversarial approach



→ Final loss function

$$\mathcal{L} = \mathcal{L}_{recons} + eta_1 \, \mathcal{L}_{KLD} + eta_2 \, \mathcal{L}_{perceptual} + eta_3 \, \mathcal{L}_{adversarial}$$

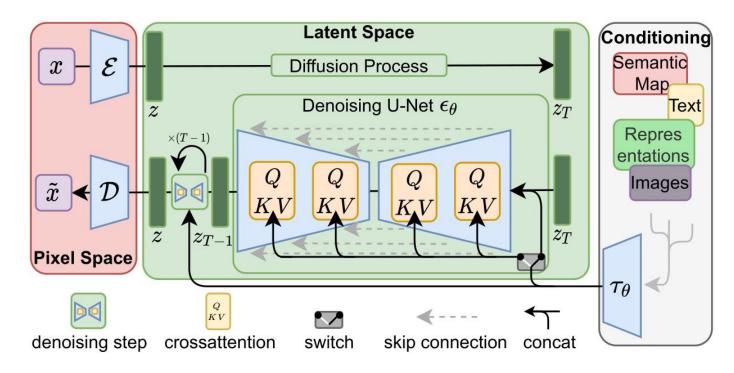
Latent diffusion model (LDM)

VAE is learned independently of DDPM and its architecture is fixed

Minimization of the following loss function

$$\mathcal{L}_{LDM} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}, t \sim [1,T]} \left[\| \epsilon_t - \epsilon_ heta(x_t,t) \|^2
ight]$$

LDM architecture



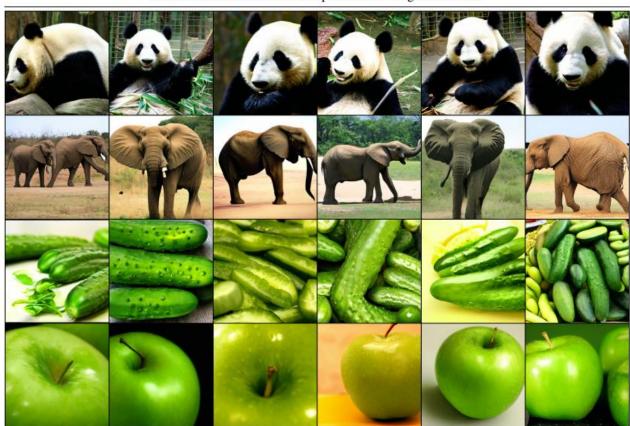
Properties

Parameters	LDM – $256 imes 256$
z-shape	64 × 64 × 3
Diffusion steps	1000
Noise scheduler	linear
Number of parameters	274 Million
Channels	224
Channel multiplier	1, 2, 3, 4
Attention resolutions	32, 16, 8
Number of head	1
Batch size	48
Iterations	410 k
Learning rate	9.6 e^{-5}

Random generation of synthetic images without conditioning learned from the CelebA-HQ database

Random samples on the CelebA-HQ dataset

Random generation of synthetic images with conditioning on the class learned from the ImageNet database



Random class conditional samples on the ImageNet dataset

Latent diffusion model (LDM)

Random generation of synthetic images with conditioning on masks learned from the Flickr-landscapes database

Latent diffusion model (LDM)

Random generation of synthetic images with conditioning on text learned from LAION-400M database

- → Using the BERT tokenizer
- → This model has over 1.45 billion parameters!

<image>

That's all folks