

🖐 Inserm

Is the problem of medical image segmentation a thing of the past ?

by Olivier Bernard Professor – University of Lyon (INSA), France

July 10, 2024

CREATIS; CNRS (UMR 5220); INSERM (U1294); INSA Lyon; Université de Lyon, France

Resume

	I methods in cardiac image ar	nalysis
Acquisition	Image quantification	Population representation
Ultrafast cardiac imaging	Segmentation Tissue motion / blood flow Uncertainty modeling Domain adaptation	Multi-modal fusion Heterogenous data integration
Realistic simulations	Convolutional NN	Transformers
	Physics informed NN Diffusion networks	Etiology classification Hypertension characterization
Robust estimation of	f existing / new biomarkers	l J

Cardiac imaging

Quantification of clinical indices to diagnose cardiac pathologies

MRI

✓ High annotation costs

- ✓ Inter/intra expert variability
- ✓ Acquisition variabilities
- ✓ Acquisition artifacts

From the inHEART company website

Echocardiographic imaging

Quantification of clinical indices to diagnose cardiac pathologies

Anatomical imaging

Nyocardium Left ventricle Left atrium

Conventional ultrasound acquisition in clinical routine

Source: GE Healthcare web site

Quantification of clinical indices to diagnose cardiac pathologies

Automatic delineation of

anatomical structures

- Scalar descriptors
- Time-series descriptors

Scalar descriptors

- Myocardial mass
- Left ventricle ejection fraction

Time-series descriptors

- Left ventricle area
- Global longitudinal strain

Challenges

- How to make the measurements extracted from medical images automatic, reliable and accurate ?
- How to make these measurements reproducible at different centers, in different countries, whatever the expert ?

Deep learning families

Convolutional Neural Network

Convolutional layer

Create relevant information called *feature map* (convolution + non linear function)

Parameters that are learned during training

Convolutional layer

Create relevant information called *feature map* (convolution + non linear function)

Parameters that are learned during training

Filter of size 3×3 # param = $16 \times (3 \times 3 \times 3 + 1)$ = 448

feature maps

Convolutional layer

Create relevant information called *feature map* (convolution + non linear function)

Parameters that are learned during training

Pooling operation

Concentrate information into lower dimensional space

✓ Applied individually to each feature map

Pooling operation

Concentrate information into lower dimensional space

✓ Applied individually to each feature map

No parameter to train

Image encoding

- ✓ Learning to encode relevant information
- ✓ Projection to a lower dimensional space

Deconvolutional layer

Propagate relevant information to the input dimension space

✓ Parameters that are learned during training

feature maps 2

Encoder-decoder architectures

U-Net architecture

✓ Between 3 M to 40 M of parameters to train

Deep learning families

Transformers

Tokenization procedure

Representation of an image into a lower dimensional space

Transformer blocs / layers

Create relevant information (attention + non linear function)

Parameters that are learned during training

D = 768

Self-attention module

 $D = 768, D_h = 64$

$$\# param = 3 \times 768 \times 64 = 147,456$$

Multi-head attention module

$$D = 768, D_h = 64, k = 12$$

param = 12 × 3 × 768 × 64 + 768 * 768 = 2,359,296

Image encoding

- ✓ Learning to encode relevant information
- ✓ Projection to a lower dimensional space

 $D = 768, D_h = 64, k = 12, N_{blocs} = 12$ # param = 12 × (12 × 3 × 768 × 64 + 768 * 768) + 12 × (2 × 768 × 3072) = 84,934,656

Foundation models

✓ 91 M of parameters to train

Segmentation of echocardiographic images

[Leclerc et al., IEEE TMI 2019]

The two key ingredients

 Deep learning solution with the proper complexity

 Database with good quality annotations

Echocardiographic datasets

2D Public Echocardiographic Datasets											
				Grou	nd truth		Views		Characteristics		
Name	Year	Subjects	LV _{endo}	LV _{epi}	LA	Full cardiac cycle	A2C	A4C	Multi- Center	Multi- Vendor	
CAMUS	2019	500	✓	\checkmark	\checkmark	×	✓	✓	×	×	
EchoNet	2019	10,036	✓	x	×	×	×	✓	×	-	
HMC-QU	2021	292	✓	✓	×	×	✓	✓	×	✓	
TED	2022	98	~	~	×	✓	×	✓	×	×	

Echocardiographic datasets

2D Public Echocardiographic Datasets											
		Nh		Ground truth				Views		Characteristics	
Name	Year	Subjects	LV _{endo}	LV _{epi}	LA	Full cardiac cycle	A2C	A4C	Multi- Center	Multi- Vendor	
CAMUS	2019	500	~	✓	✓	×	✓	✓	×	×	
EchoNet	2019	10,036	✓	×	×	×	×	✓	×	-	
HMC-QU	2021	292	✓	✓	x	×	✓	✓	×	✓	
TED	2022	98	✓	✓	x	✓	×	✓	×	×	

CAMUS

- ✓ Center 1
- Annotator 1
- ✓ Vendor 1
- ✓ 500 patients
- Image annotations

TED

- ✓ Center 1
- Annotator 1
- ✓ Vendor 1
- ✓ 98 patients
- Sequence annotations

CAMUS - Performance

✓ Geometric accuracy

(CS:CAMUS)						
	Di	ce	Hausdo	Hausdorff (mm)		
Methods	ED	ES	ED	ES		
Intra-obs.	.945	.930	4.6	4.5		
2D nnU-Net	.952	.935	4.3	4.2		
CLAS	.947	.929	4.6	4.6		
GUDU	.946	.929	4.7	4.7		

(CS:CAMUS)

		EF	Vol	lume ED	Vo	lume ES
Methods	Corr.	MAE (%)	Corr.	MAE (ml)	Corr.	MAE (ml)
Intra-obs.	.896	4.7	.978	6.5	.981	4.5
2D nnU-Net	.857	4.7	.977	5.9	.987	4.0
CLAS GUDU	.926 .897	$\begin{array}{c} 4.0\\ 4.0\end{array}$.958 .977	$\begin{array}{c} 7.7 \\ 6.7 \end{array}$.979 .981	$\begin{array}{c} 4.4 \\ 4.6 \end{array}$

✓ Clinical accuracy

CAMUS - Conclusions

What are the conclusions of the pilot CAMUS's story ?

- ✓ nnU-Net produces:
 - accurate scores from a controlled dataset
 - within the intra-expert variability
- ✓ Has the potential to replace the expert's hand !

How can these results be generalized to large-scale datasets involving data from multiple centers, multiple vendors and multiple experts?

nnU-Net predictions

Two tendencies

Foundation models

• Learning from large scale datasets with different modalities, organs, views, ...

- ✓ Domain adaptation
 - Efficient transfer from a source dataset (CAMUS) to a target dataset

Brief chronology for Segment Anything (SAM) models

From [Zhang et al., CIBM, 2024]

✓ SAM dataset

Licensing private dataset accessible for research purposes

From [Kirillov et al., Arxiv, 2023]

✓ SAM-Med2D dataset

Collating from publicly available medical datasets + private datasets

From [Cheng et al., Nature, 2024]

• 4.6 M images / 19.7 M masks

- 2D images
- 10 imaging modalities
- 31 major organs
- 15% of CT images
- $256 \times 256 \times 3$ image size
- Image intensity homogenization

✓ SAM-Med3D dataset

Collating from publicly available medical datasets + private datasets

From [Wang et al., Arxiv, 2024]

Al architecture

Transformer model with high complexity
More than 91 M of parameters

Training strategies

- Pre-training from SAM dataset
- Fine-tuning on SAM-Med datasets

Architecture choices

- Freeze prompt encoder while fine-tuning image encoder and mask decoder
- Freeze image encoder while introducing learnable adapter layer, fine-tuning the prompt encoder and mask decoder

Performance illustration

https://github.com/bowang-lab/MedSAM

Two tendencies

✓ Foundation models

• Learning from large scale datasets with different modalities, organs, views, ...

✓ Domain adaptation

• Efficient transfer from a source dataset (CAMUS) to a target dataset

Inspired from reinforcement learning

Update nnU-Net weights to fit with the target dataset

Inspired from reinforcement learning

✓ Update nnU-Net weights to fit with the target dataset

Inspired from reinforcement learning

✓ Update nnU-Net weights to fit with the target dataset

Fine-tune the policy network π_{θ} with PPO algorithm

Preliminary results

✓ Scores computed from 220 patients from the target dataset

Method	Dice (%) \uparrow			Hausdorff (mm) \downarrow			Anatomical	
	ENDO	EPI	Avg.	ENDO	EPI	Avg.	Validity (%)	
\mathcal{D}_S intra-expert var.	94.4	95.4	94.9	4.3	5.0	4.6	100	
nnUnet	91.0	94.6	92.8	6.3	7.8	7.1	95.0	
RL4Seg (ours)	91.9	94.7	93.3	4.9	5.6	5.3	98.9	

Preliminary results

✓ Scores computed from 220 patients from the target dataset

Conclusions & Perspectives

Conclusions

- ✓ AI methods have already revolutionized medical image segmentation
- Pilot studies have shown that such methods can faithfully reproduce the hand of an expert

Perspectives

- ✓ Intensive studies on the generalization of AI model to large scale dataset
- We are undoubtedly witnessing the resolution of the segmentation problem in medical imaging!

Thanks

Appendices

Convolution reminder

30	3,	2_2	1	0	
0_2	0_2	1_0	3	1	
30	1_1	2_{2}	2	3	
2	0	0	2	2	
2	0	0	0	1	

12	12	17
10	17	19
9	6	14

$$0 = I * h \qquad o[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} i[u,v] h[i-u,j-v]$$

- MedSAM dataset
- Collating from publicly available medical datasets

- 10 imaging modalities
- 30 cancer types
- 24% of CT images
- $1024 \times 1024 \times 3$ image size
- Image intensity homogenization

Cardiac imaging

Quantification of clinical indices to diagnose cardiac pathologies

Echocardiographic imaging

MR imaging

✓ High annotation costs

- ✓ Inter/intra expert variability
- ✓ Acquisition variabilities
- Acquisition artifacts

CT imaging

Performance illustration

https://github.com/bowang-lab/MedSAM