

Is the problem of medical image segmentation a thing of the past ?

by **Olivier Bernard** Professor – University of Lyon (INSA), France

July 10, 2024

CREATIS; CNRS (UMR 5220); INSERM (U1294); INSA Lyon; Université de Lyon, France

Resume

Cardiac imaging

Quantification of clinical indices to diagnose cardiac pathologies

MRI

From the inHEART company website

- \checkmark High annotation costs
- \checkmark Inter/intra expert variability
- \checkmark Acquisition variabilities
- \checkmark Acquisition artifacts

Echocardiographic imaging

Quantification of clinical indices to diagnose cardiac pathologies

▶ Anatomical imaging

Conventional ultrasound acquisition in clinical routine

Source: GE Healthcare web site

Quantification of clinical indices to diagnose cardiac pathologies

Automatic delineation of

anatomical structures

- Scalar descriptors
- Time-series descriptors

Scalar descriptors

- Myocardial mass
- Left ventricle ejection fraction

Time-series descriptors

- Left ventricle area
- Global longitudinal strain

5

Challenges

- ▶ How to make the measurements extracted from medical images automatic, reliable and accurate ?
- ► How to make these measurements reproducible at different centers, in different countries, whatever the expert ?

Deep learning families

Convolutional Neural Network

Convolutional layer

 \checkmark Create relevant information called *feature map* (convolution + non linear function)

 \checkmark Parameters that are learned during training

Convolutional layer

 \checkmark Create relevant information called *feature map* (convolution + non linear function)

 \checkmark Parameters that are learned during training

Filter of size 3×3 # $param = 16 \times (3 \times 3 \times 3 + 1)$ $= 448$

Convolutional layer

 \checkmark Create relevant information called *feature map* (convolution + non linear function)

 \checkmark Parameters that are learned during training

Pooling operation

 \checkmark Concentrate information into lower dimensional space

 \checkmark Applied individually to each feature map

Pooling operation

 \checkmark Concentrate information into lower dimensional space

 \checkmark Applied individually to each feature map

No parameter to train

Image encoding

- \checkmark Learning to encode relevant information
- \checkmark Projection to a lower dimensional space

Deconvolutional layer

 \checkmark Propagate relevant information to the input dimension space

 \checkmark Parameters that are learned during training

feature maps 2

Encoder-decoder architectures

U-Net architecture

\checkmark Between 3 M to 40 M of parameters to train

Deep learning families

Transformers

512

Tokenization procedure

Tokenization procedure

\checkmark Representation of an image into a lower dimensional space

Transformer blocs / layers

 \checkmark Create relevant information (attention + non linear function)

 \checkmark Parameters that are learned during training

 $D = 768$ $D = 768$

Self-attention module $D = 768, D_h = 64$

$$
param = 3 \times 768 \times 64 = 147,456
$$

Multi-head attention module

$$
D = 768, D_h = 64, k = 12
$$

$param = 12 \times 3 \times 768 \times 64 + 768 * 768 = 2,359,296$

Image encoding

- \checkmark Learning to encode relevant information
- \checkmark Projection to a lower dimensional space

Foundation models

\checkmark 91 M of parameters to train

Segmentation of echocardiographic images

[Leclerc et al., IEEE TMI 2019]

The two key ingredients

 \checkmark Deep learning solution with the proper complexity

\checkmark Database with good quality annotations

Echocardiographic datasets

 \blacktriangle

Echocardiographic datasets

CAMUS

- ✓ Center 1
- ✓ Annotator 1
- ✓ Vendor 1
- \checkmark 500 patients
- ✓ Image annotations

TED

- ✓ Center 1
- ✓ Annotator 1
- ✓ Vendor 1
- \checkmark 98 patients
- \checkmark Sequence annotations

CAMUS - Performance

\checkmark Geometric accuracy

$(CS:CAMUS)$

\checkmark Clinical accuracy

CAMUS - Conclusions

What are the conclusions of the pilot CAMUS's story ?

✓ nnU-Net produces:

- accurate scores from a controlled dataset
- within the intra-expert variability
- \checkmark Has the potential to replace the expert's hand !

How can these results be generalized to large-scale datasets involving data from multiple centers, multiple vendors and multiple experts?

nnU-Net predictions

Two tendencies

Foundation models

■ Learning from large scale datasets with different modalities, organs, views, ...

- \checkmark Domain adaptation
	- Efficient transfer from a source dataset (CAMUS) to a target dataset

Brief chronology for Segment Anything (SAM) models

From [Zhang et al., CIBM, 2024]

 \checkmark SAM dataset

 \checkmark Licensing private dataset accessible for research purposes

From [Kirillov et al., Arxiv, 2023]

✓ SAM-Med2D dataset

 \checkmark Collating from publicly available medical datasets + private datasets

From [Cheng et al., Nature, 2024]

- 4.6 M images / 19.7 M masks
- 2D images
- 10 imaging modalities
- 31 major organs
- 15% of CT images
- 256 \times 256 \times 3 image size
- Image intensity homogenization

✓ SAM-Med3D dataset

 \checkmark Collating from publicly available medical datasets + private datasets

● 21 K images / 131 K masks 3D images ● 27 imaging modalities (among CT) ● 7 anatomical structures ● $128 \times 128 \times 128$ patch size

AI architecture

 \checkmark Transformer model with high complexity \checkmark More than 91 M of parameters

Training strategies

- Pre-training from SAM dataset
- Fine-tuning on SAM-Med datasets

Architecture choices

- Freeze prompt encoder while fine-tuning image encoder and mask decoder
- Freeze image encoder while introducing learnable adapter layer, fine-tuning the prompt encoder and mask decoder

Performance illustration

<https://github.com/bowang-lab/MedSAM>

Two tendencies

\checkmark Foundation models

■ Learning from large scale datasets with different modalities, organs, views, ...

Domain adaptation

■ Efficient transfer from a source dataset (CAMUS) to a target dataset

Inspired from reinforcement learning

 \checkmark Update nnU-Net weights to fit with the target dataset

Inspired from reinforcement learning

✓ Update nnU-Net weights to fit with the target dataset

Inspired from reinforcement learning

 \checkmark Update nnU-Net weights to fit with the target dataset

Fine-tune the policy network π_{θ} with PPO algorithm

Preliminary results

 \checkmark Scores computed from 220 patients from the target dataset

Preliminary results

\checkmark Scores computed from 220 patients from the target dataset

Conclusions & Perspectives

▶ Conclusions

- \checkmark AI methods have already revolutionized medical image segmentation
- \checkmark Pilot studies have shown that such methods can faithfully reproduce the hand of an expert

▶ Perspectives

- ✓ Intensive studies on the generalization of AI model to large scale dataset
- \checkmark We are undoubtedly witnessing the resolution of the segmentation problem in medical imaging!

Thanks

Appendices

Convolution reminder

$$
0 = I * h \qquad o[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} i[u,v] h[i-u,j-v]
$$

- ✓ MedSAM dataset
- \checkmark Collating from publicly available medical datasets

- 30 cancer types
- 24% of CT images
- $1024 \times 1024 \times 3$ image size
- Image intensity homogenization

Taken from [Ma et al., Nature, 2024]

Cardiac imaging

Quantification of clinical indices to diagnose cardiac pathologies

Echocardiographic imaging

CT imaging

MR imaging

- \checkmark High annotation costs
- \checkmark Inter/intra expert variability
- \checkmark Acquisition variabilities
- \checkmark Acquisition artifacts

Performance illustration

<https://github.com/bowang-lab/MedSAM>