DLM2025

Diffusion models

Olivier Bernard

olivier.bernard@insa-lyon.fr

- Best current methods for synthetic image generation
 Allows generating images in a *conditioned* form
- Many software solutions, such as Midjourney, DALL-E

An Asian girl in ancient coarse linen clothes rides a giant panda and carries a wooden cage. A chubby little girl with two buns walks on the snow. High-precision clothing texture, real tactile skin, foggy white tone, low saturation, retro film texture, tranquil atmosphere, minimalism, long-range view, telephoto lens

Recent extensions for video synthesis

https://lumiere-video.github.io/#section image to video

Text-to-Video

* Hover over the video to see the input prompt.

What is the purpose of diffusion models?

Recent extensions for video synthesis

https://lumiere-video.github.io/#section image to video

Image-to-Video

* Hover over the video to see the input image and prompt.

Family of diffusion networks

Denoising Diffusion Probabilistic models

Score-based methods

Normalizing flow methods

Intuition behind diffusion models

Interpretation of the loss function

Completeness is expressed as a soft constraint !

 $\mathcal{N}(g(x), diag(h(x)))$ and $\mathcal{N}(0, I)$ should remain close in terms of distributional distance

Sampling from the latent space $\mathcal{N}(0, I)$ does not guarantee to obtain a reconstructed image from the target distribution

Variational Auto-encoders

Illustration from Mednist dataset

- (train,valid,test) = (1491,373,223)
- Input image size: 48x48 / latent space K=432 (compression factor around 5)

Linear interpolation between two real images

Sampling directly from the latent space

 $z \in \mathbb{R}^{(K)}$ with $z_i \sim \mathcal{N}(0, I)$

A soft constraint on the latent space to remain close to $\mathcal{N}(0, I)$ is not sufficient to build generative models that effectively learn a target distribution

The denoising diffusion probabilistic models

DDPM

All the mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

Basic idea of denoising diffusion model

How can a hard constraint be enforced to ensure a direct transformation from the latent space (modeled as a Gaussian) to the target distribution?

Noising process

Denoising process

Noising process (forward diffusion process)

Modeled as sequence of normal distributions (Markov chain process)

 β_{t} : variance varying over the iterative process from 0 to 1

$$egin{array}{lll} ext{if} & eta_t=0, \quad ext{then} & q(x_t\mid x_{t-1})=x_{t-1} \ ext{if} & eta_t=1, \quad ext{then} & q(x_t\mid x_{t-1})=\mathcal{N}(0,\mathbf{I}) \end{array}$$

14

Noising / denoising processes

Training procedure

- Choose a random step $t \in \{1, ..., T\}$
- Trained a U-Net model to predict ϵ_{θ} from x_t

Architecture

Standard U-Net with attention layers and position encoding to integrate temporal information

\rightarrow Integration of t is necessary because the added noise varies over time

Architecture

Attention layer Attention layer $softmax\left(rac{\mathbf{Q}\cdot \mathbf{K}^{T}}{\sqrt{K}}
ight)$ token $\mathbf{t} \in \mathbb{R}^{(1 \times 1) \times \mathcal{D}}$ $\mathbf{Q} \in \mathbb{R}^{(H \times W) \times K}$ Linear projection $\mathbf{A} \cdot \mathbf{V}$ CONCATENATION Simple matrix multiplication of dimensions Self-Attention matrix $\mathbf{A} \in \mathbb{R}^{(H \times W) \times (H \times W)}$ $\mathbf{K} \in \mathbb{R}^{(H \times W) \times K}$ Feature map $\mathbb{R}^{(kV) \times D}$ Head $\mathbf{F}_{in} \in \mathbb{R}^{(H \times W) \times D}$ Concatenated heads Output map $\mathbf{H}_{e} \in \mathbb{R}^{(H \times W) \times V}$ $\mathbf{H}_{es} \in \mathbb{R}^{(H \times W) \times kV}$ $\mathbf{F}_{out} \in \mathbb{R}^{(H \times W) \times D}$ $\mathbf{V} \in \mathbb{R}^{(H \times W) \times V}$ Self attention part Multi-head part

 $x_{T}\sim\mathcal{N}\left(0,\mathbf{I}
ight)$

 x_0

Generate a random image x_T ~ N(0, I) ∈ ℝ^{N×M}
 At each step from T to 0, use the U-Net model to compute

$$x_{t-1} = rac{1}{\sqrt{lpha_t}} igg(x_t - rac{1-lpha_t}{\sqrt{1-ar lpha_t}} \, \epsilon_ heta(x_t,t) igg) + \sigma_t \, \epsilon \qquad ext{U-Net}$$

with $\epsilon \sim \mathcal{N}\left(0,\mathbf{I}
ight)$

Practical application

Latent diffusion models

Latent diffusion model (LDM)

- VAE is learned independently of DDPM and its architecture is fixed
 - Efficiently reduce the dimensionality of the input space
 - Efficiently initiate the Gaussian diffusion process

LDM architecture

 Random generation of synthetic images without conditioning learned from the CelebA-HQ database

Random samples on the CelebA-HQ dataset

Random generation of synthetic images with conditioning on the class learned from the ImageNet database

Random class conditional samples on the ImageNet dataset

Latent diffusion model (LDM)

Random generation of synthetic images with conditioning on masks learned from the Flickr-landscapes database

 Random generation of synthetic images with conditioning on text learned from LAION-400M database

Using the BERT tokenizer

□ This model has over 1.45 billion parameters!

Medical applications

Synthetic dataset generation for brain MR volumes [Walter et al., MICCAI workshop 2022]

UK Biobank dataset

- 3D MR volumes (T1w)
- Training: 31,740 patients
- with covariables: age (44 to 82 years), gender (53% women), brain structure volumes
- Quality of synthetic data measured using FID: Fréchet Inception Distribution

VAE

- 3D convolutions
- Latent space dimension: 20 x 28 x 20

DDPM

- 3D convolutions
- T=1000 time steps
- Conditioning: vector encoding of each covariable

				$\mathbf{FID}\downarrow$
Results			LSGAN	0.0231
FID: generated from 1.000 samples drawn from		oles drawn from	VAE-GAN	0.1576
each of the two distributions to be compared			LDM	0.0076
		Real images	0.0005	
	VAE-GAN		LSGAN	
R				
	Sample 1	Real Images	Sample 2	
LDM (Ours)				

Results

- SynthSeg model was used to automatically measure brain volumes from synthetic data
- A 3D CNN trained from the UK biobank was used to automatically predict the age from the synthetic data

- Synthetic dataset of 100,000 human brain was generated and made publicly available with the conditioning information
- Promote data sharing with privacy guarantees

Diffusion models for image segmentation

Segmentation of tumors from MR images [Wolleb et al., MIDL 2022]

BRATS2020 dataset

- 4 different MR sequences per patient (T1, T2, T1ce, FLAIR)
- Training: 332 patients with 3D volumes sequences => 16,998 2D images
- Testing: 37 patients with 3D volumes sequences => 1,082 2D images

4 MR inputs per patient (T1, T2, T1ec, FLAIR)

Mask output

Learn the underlying distribution of tumor segmentation masks

Conditioning with the 4 MR images using concatenation scheme

At inference time: modelling of the segmentation uncertainty

Corresponding brain MR image b

Illustration taken from https://www.youtube.com/watch?v=US9CzPrT2H8

Results

Anomaly detection from MR images [Wolleb et al., MICCAI 2024]

BRATS2020 dataset

- 4 different MR sequences per patient (T1, T2, T1ce, FLAIR)
- Training: 332 patients with 3D volumes sequences => 16,998 2D images
- 5,598 healthy 2D slices (without tumor) / 10,607 disease 2D slices

4 MR inputs per patient (T1, T2, T1ec, FLAIR)

Mask output

General idea

How to preserve spatial anatomical information using a diffusion process?

Denoising Diffusion Implicit Models (DDIM)

- Reformulation of the diffusion process
- Remove the random component $\sigma_t \epsilon$
- Make the diffusion process deterministic

Iterative noise encoding for
$$t = 0, \cdots T$$

for
$$t=T,\cdots 0$$

- Main algorithm part 1
 - Train a classical DDPM on the dataset containing healthy and disease images
 - Train a classifier network C to predict the class label (healthy vs disease) from any noisy images x_t

- Main algorithm part 2
 - Use DDIM process
 - Compute the gradient of the classifier to guide the removing of anomaly regions

Illustration taken from https://arxiv.org/pdf/2203.04306

Result on an image with a tumor

Result on an image without any tumor

That's all folks

Denoising Diffusion Implicit Models (DDIM)

- Reformulation of the diffusion process
- Remove the random component $\sigma_t \epsilon$

$$\begin{aligned} x_{t-1} &= \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \epsilon_{\theta}(x_t, t) \\ x_{t+1} &= x_t + \sqrt{\bar{\alpha}_{t+1}} \left[\left(\sqrt{\frac{1}{\bar{\alpha}_t}} - \sqrt{\frac{1}{\bar{\alpha}_{t+1}}} \right) x_t + \left(\sqrt{\frac{1}{\bar{\alpha}_{t+1}} - 1} - \sqrt{\frac{1}{\bar{\alpha}_t}} - 1 \right) \epsilon_{\theta}(x_t, t) \right] \end{aligned}$$

Make the diffusion process deterministic

Iterative noise encoding
for
$$t = 0, \dots T$$
Iterative noise decoding
for $t = T, \dots 0$