

by Olivier Bernard Professor – University of Lyon (INSA), France

September 06, 2023

CREATIS; CNRS (UMR 5220); INSERM (U1294); INSA Lyon; Université de Lyon, France

Resume

	Al methods in cardiac image ar	nalysis
Acquisition	Image quantification	Population representation
Ultrafast cardiac imaging	Segmentation Tissue motion estimation Blood flow estimation Uncertainty modeling	Multi-modal fusion Heterogenous data integration
Realistic simulations	Convolutional NN Variational Auto Encodors	Transformers
	Physics informed NN Diffusion networks	Etiology classification Hypertension characterization
Robust estimation of	of existing / new biomarkers	

Quantification of clinical indices to diagnose cardiac pathologies

Anatomical imaging

Source: GE Healthcare web site

Quantification of clinical indices to diagnose cardiac pathologies

Segmentation of

anatomical structures

- Ventricular volumes
- Myocardial mass
- Ejection fraction

Challenges

How to make the measurements extracted from images automatic, reliable and precise ?

→ Cardiac structure segmentation

→ Tissue motion / blood flow estimation

Segmentation of echocardiographic images

[Leclerc et al., IEEE TMI 2019]

- 1. Precise and accurate 2D segmentation
 - ✓ Intra-observer variability
- 2. Frame-by-frame temporal consistency
- 3. Generalization ability across datasets

Limited by currently available public datasets

2D Public Echocardiographic Datasets											
			Ground truth				Views		Characteristics		
Name	Year	Investigators	Nb. Subjects	LV _{endo}	LV _{epi}	LA	Full cardiac cycle	A2C	A4C	Multi- Center	Multi- Vendor
CAMUS	2019	CREATIS	500	 ✓ 	\checkmark	√	×	 ✓ 	✓	×	×
EchoNet	2019	Stanford	10,036	✓	×	×	×	×	✓	×	-
HMC-QU	2021	Hamad/Tam pere/Qatar	292	~	✓	×	×	✓	✓	×	~
TED	2022	CREATIS	98	✓	~	×	✓	×	✓	×	×

Challenges

X

Echocardiographic datasets

Multi center, multi vendor, multi annotator datasets

- CAMUS
- ✓ Center 1✓ 500 patients
- Annotator 1

 (images)
- ✓ GE system

CARDINAL

- ✓ Center 2
- ✓ 240 patients
- ✓ NO annotator
- ✓ GE system

- ✓ Center 3
- ✓ 30 patients
- Annotator 2 (sequences)
- Philips system

(CS:CAMUS)							
		Di	ce	Hausdo	Hausdorff (mm)		
Methods	Train/test	ED	ES	ED	ES		
Intra-obs.		.945	.930	4.6	4.5		
2D nnU-Net CLAS GUDU	$\rm CS/CS$.952 .947 .946	.935 .929 .929	4.3 4.6 4.7	4.2 4.6 4.7		

Intra-observer variability can be reached using standard NN architectures with enough data (around 2000 images) on a controlled dataset !

Needs for temporal consistency

Segmentation with a 2D nnU-Net

Manual annotation

How to guarantee anatomical and temporal consistency ?

[Painchaud et al., IEEE TMI 2020] [Painchaud et al., IEEE TMI 2022]

Variational Auto Encoders

Efficient representation of data through a latent space

- ✓ Local continuity
- ✓ Global completeness

0123456789

Latent space $z_i \in \mathbb{R}^2$

Variational Auto Encoders

Efficient representation of data through a latent space

- ✓ Local continuity
- ✓ Global completeness

Linear interpolation into the latent space

$$t\cdot z_0+(1-t)\cdot z_7, \qquad 0\leq t\leq 1$$

How to guarantee anatomical coherence ?

[Painchaud et al., IEEE TMI 2020]

Reinforcement of the local linearity of a shape latent space

- ✓ Use of a single neuron network with no activation and a regression on its instant on the cardiac phase between 0 (ED) and 1 (ES)
- ✓ Force the encoder to learn a more linear manifold of valid shapes in the latent space

Reinforcement of the local linearity of a shape latent space

✓ Linear interpolation in the latent space make sense

Constrained latent space

Segmentation with strong anatomical guarantees

Efficient encoding of anatomical shapes in a latent space

Segmentation with strong anatomical guarantees

Definition of 12 anatomical metrics

- ✓ (3 criteria) hole(s) in the LV, RV or LA
- ✓ (2 criteria) hole(s) between LV/MYO or between LV/LA
- \checkmark (3 criteria) presence of more than one LV, MYO or LA
- ✓ (2 criteria) size of the area by which the LV touches the background or the MYO touches the LA
- ✓ (1 criterion) ratio between the minimal and maximal thickness of the MYO
- ✓ (1 criterion) ratio between the width of the LV and the average thickness of the MYO

Segmentation with strong anatomical guarantees

Correction of segmentation to guarantee the plausibility of anatomical shapes

Almost same accuracy than the original methods but with correct anatomical shapes

How to guarantee temporal consistency ?

[Painchaud et al., IEEE TMI 2020] [Painchaud et al., IEEE TMI 2022]

Generation of a structured latent space

- ✓ Specific continuous-valued attributes forced to be encoded along specific dimensions
- ✓ Loss = VAE loss + Attribute Regularisation Loss

Sampling of the structured latent space

Generation of structured latent space according to specific attributes

- ✓ Left ventricle (LV) cavity: area, length, basal width, orientation
- Myocardial area
- ✓ Epicardial center

Description of the cardiac shapes

Proposed temporal pipeline

Proposed temporal pipeline

Post-processed nnU-Net

Segmentation of echocardiographic images with temporal consistency

[Ling et al., FIMH 2023]

Applied trained models on CARDINAL and postprocessed predictions using CASTOR to correct temporal inconsistency -> GOLD STANDARD

Geometrical accuracy

(CL:CARDINAL, CS:CAMUS)

		Dice		Hausdorff (mm)			
Methods	Train/test	ED	ES	All	ED	ES	
Intra-obs.		.945	.930		4.6	4.5	
3D nnU-Net 2D nnU-Net U-Net LSTM	$\rm CL/CL$.968 .961 .964	.960 .942 .956		2.7 3.1 2.8	2.5 3.1 2.6	
3D nnU-Net 2D nnU-Net U-Net LSTM	$\mathrm{CL/CS}$.939 .934 .925	.926 .921 .903	- - -	5.2 4.9 6.0	4.6 5.8	
2D nnU-Net CLAS GUDU	$\rm CS/CS$.952 .947 .946	.935 .929 .929	- - -	4.3 4.6 4.7	4.2 4.6 4.7	

Clinical accuracy

	Γ		
		-	
	-		•

		\mathbf{EF}		Volume ED		Volume ES	
Methods	Train/test	Corr.	MAE (%)	Corr.	MAE (ml)	Corr.	MAE (ml)
Intra-obs.		.896	4.7	.978	6.5	.981	4.5
3D nnU-Net	CL/CL	.913	2.9	.978	3.3	.974	2.7
2D nnU-Net		.850	3.8	.967	4.4	.957	3.2
U-Net LSTM		.922	2.7	.973	3.4	.969	2.8
3D nnU-Net	CL/CS	.869	5.3	.974	9.6	.976	4.9
2D nnU-Net		.810	7.0	.970	12.8	.959	6.2
U-Net LSTM		.822	11.1	.879	15.9	.903	8.2
2D nnU-Net	CS/CS	.857	4.7	.977	5.9	.987	4.0
CLAS		.926	4.0	.958	7.7	.979	4.4
GUDU		.897	4.0	.977	6.7	.981	4.6

Visualization – temporal consistency

CAMUS

CARDINAL

Visualization – GE vs Philips

3D nnU-Net prediction (US-MR)

CAMUS annotator (CAMUS)

Philips system

GE system

Uncertainty estimation for cardiac image segmentation

[Judge et al., MICCAI 2022]

Training phase

Inference phase

Predicted mask

Illustration of uncertainty results

CAMUS

✓
$$Nb_y = 9000$$

✓ $L = 150$

Quantitative evaluation

- ✓ Corr: correlation between the sum of the uncertainty values and (1-Dice) score
- ✓ MI: Mutual information between the uncertainty map and the error map

Training data	CAMUS		CAM	IUS	Shenzen	
Testing data	CAMUS		HMC-	-QU	JSRT	
Method	Corr. \uparrow	$\mathrm{MI}\uparrow$	Corr. \uparrow	$\mathrm{MI}\uparrow$	$Corr. \uparrow$	MI↑
Entropy	0.66	0.02	0.34	0.02	0.89	0.02
ConfidNet [1]	0.34	0.04	0.36	0.04	0.69	0.01
<i>CRISP</i>	0.71	0.20	0.41	0.06	0.83	0.11
McDropout [3]	0.67	0.03	0.26	0.02	$\begin{array}{c} 0.82\\ 0.82 \end{array}$	0.03
<i>CRISP</i> -MC	0.78	0.26	0.29	0.06		0.08
LCE [2]	0.58	0.44	0.35	0.37	0.87	0.06
<i>CRISP</i> -LCE	0.59	0.08	0.34	0.13	0.85	0.11

Conclusions & Perspectives

Conclusions

✓ VAE framework can be effectively used in medical imaging to

- Guarantee anatomical coherence
- Guarantee temporal consistency
- Estimate uncertainty for image segmentation

Perspectives

Extensive validation on large scale dataset (>100.000 patients)

Thanks

Appendices

Static image accuracy

	(CS:CAMUS)							
					lice	Hausdo	Hausdorff (mm)	
	Methods	Train/t	est	ED	ES	ED	\mathbf{ES}	
	Intra-obs.			.945	.930	4.6	4.5	
	2D nnU-Net			.952	.935	4.3	4.2	
	CLAS	CS/CS		.947	.929	4.6	4.6	
	GUDU			.946	.929	4.7	4.7	
			\mathbf{EF}		Vo	lume ED	Vol	ume ES
Methods	Train/test	Corr.	MAI	E (%)	Corr.	MAE (ml)	Corr.	MAE (ml)
Intra-obs.		.896	4	.7	.978	6.5	.981	4.5
2D nnU-N	fet	.857	4	.7	.977	5.9	.987	4.0
CLAS	$\rm CS/CS$.926	4	.0	.958	7.7	.979	4.4
GUDU		.897	4	.0	.977	6.7	.981	4.6

Geometrical accuracy

(CL:CARDINAL, CS: CAMUS, PS:PHILIPS)

	Train/test	Di	ce	Hausdor	rff (mm)	MAD (mm)	
Methods		ED	ES	ED	ES	ED	ES
3D nnU-Net	$\rm CL/CL$.968	.960	2.7	2.5	0.8	0.7
3D nnU-Net	$\mathrm{CL/CS}$.939	.926	5.2	4.6	1.6	1.5
3D nnU-Net	CL/PS	.876	.938	12.1	15.1	3.1	2.6
Inter-observer	-	.885	.914	7.1	7.6	2.9	3.2

Visualization – GE vs Philips

Annotator 2

3D nnU-Net prediction Trained from annotator 1

<image>

Philips system

Philips system

Sampling of the structured latent space

- ✓ Specific attributes: area, length, thickness, slant, width, height
- Each column corresponds to traversal along a regularized dimension

Rejection sampling

- Targeted distribution P(z)
 - ➔ Parzen window technique
- Proposed distribution $\mathbf{Q}(\mathbf{z})$

50

k Q(z)

100

150

• Constrain kQ(z) > P(z) \rightarrow Automatic choice of k

P(z)

0.06

0.05

0.00

Rejection sampling

- z~Q(z) • $\mathbf{u} \sim Unif(\mathbf{0}, kQ(\mathbf{z}))$
- Computation of P(z) \rightarrow If $u \leq P(z)$ then keep z
 - \rightarrow If u > P(z) then reject z

Populated space