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What is the interest of generative models ?

► How to generate synthetic faces ?

By modeling the corresponding 
distribution 𝒑𝜽(∙) !

➔ Reminder: normal distribution
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What are the interest of generative models ?

► How to model complex distributions ?
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What are the interest of generative models ?

► What for ? One obsession is to master the latent space !!!
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Auto-encoders
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How to learn a distribution ?

► Projection into a simpler, lower-dimensional representation space
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How to learn a complex distribution ?

► How to have a relevant representation space ?
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Auto-encoder framework

► Standard architecture

► Deep learning loss function
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Deep learning implementation

► Encoder / Decoder modeled through (convolutional) neural networks
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Interest of auto-encoders

► Auto-encoder ? For what purpose ?

➔Data representation
➔Generative model
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Interest of auto-encoders

► Data representation
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Interest of auto-encoders

► Generative model
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Limitations

► Needs to better control the structure of the latent space

Lack of global 
completeness

Lack of local 
continuity 
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Interest of auto-encoders

► Generative model with better properties thanks to variational framework
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Interest of auto-encoders

► Generative model with variational framework

Linear interpolation into the latent space

%
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Variational autoencoders

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html

All the mathematical details are given there !

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html
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Key concepts

► Enforcing a structured latent space 

➔ Through a probabilistic framework

➔ By imposing continuity 

➔ By imposing completeness
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► Mathematical formulation

Approximation of 𝒑 𝒛|𝒙 through a variational inference technique

Observation 
variables

Hidden 
variables

Probabilistic framework
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Probabilistic framework

► Hypotheses

➔ is modeled by an axis-aligned Gaussian 
distribution

➔

Kullback-Liebler divergence function
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► Optimization process

➔Maximization of the Evidence Lower Bound (ELBO)

➔ By exploiting gaussian assumption

Probabilistic framework
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► Optimization process

► Deep learning loss function

➔ 𝒈 ∙ and 𝒉(∙) are modeled through an encoder

➔ 𝒇 ∙ is modeled through a decoder

encoder decoder

Probabilistic framework
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► Loss interpretation

Probabilistic framework
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► Loss interpretation

➔ imposes local continuity

➔ imposes global completeness

Probabilistic framework
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Deep learning implementation

► Reparameterization trick
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Practical applications

The obsession is to master the latent space !!!
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Needs for accurate and robust segmentation of cardiac structures

► Quantification of clinical indices from echocardiographic images

Myocardium Left ventricle

Left atrium
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Needs for accurate and robust segmentation of cardiac structures

► Anatomical clinical indices

Left atrium

Myocardium

Left ventricle

➔ Left ventricle volumes

➔ Left ventricle ejection fraction

Apical 
views
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How to guarantee temporal  
consistency ? 
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Cardiac segmentation with temporal consistency

► Quantification of clinical indices from echocardiographic images

[Painchaud, IEEE TMI, 2022]

What we have with a 2D U-Net What we want
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Cardiac segmentation with temporal consistency

► AR-VAE: attribute-based regularization of VAE latent space

● Generation of structured latent space

➔ Specific continuous-valued attributes forced to be encoded along specific dimensions 

➔ 𝑳𝒐𝒔𝒔 = 𝑽𝑨𝑬 𝒍𝒐𝒔𝒔 + 𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆 𝑹𝒆𝒈𝒖𝒍𝒂𝒓𝒊𝒔𝒂𝒕𝒊𝒐𝒏 𝑳𝒐𝒔𝒔

[Painchaud, IEEE TMI, 2022]

[Pati, Neural Comp. Appli., 2021]
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Cardiac segmentation with temporal consistency

► AR-VAE: attribute-based regularization of VAE latent space

[Painchaud, IEEE TMI, 2022]

[Pati, Neural Comp. Appli., 2021]

● Sampling of the structured latent space
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Cardiac segmentation with temporal consistency

► AR-VAE: attribute-based regularization of VAE latent space

[Painchaud, IEEE TMI, 2022]

[Pati, Neural Comp. Appli., 2021]

● Sampling of the structured latent space

➔ Specific attribute (from left to right): area, length, thickness, slant, width, height  

➔ Each column corresponds to traversal along a regularized dimension

area

length

Thickness

Slant Height

Width

length Slant Height

area Thickness Width

length Slant Height

area Thickness Width
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Cardiac segmentation with temporal consistency

► Application to the description of the cardiac shapes

[Painchaud, IEEE TMI, 2022]

● Generation of structured latent space according to the following attributes

➔ Left ventricle (LV) cavity: area, length, basal width, orientation

➔ Myocardial area

➔ Epicardial center
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Cardiac segmentation with temporal consistency [Painchaud, IEEE TMI, 2022]
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Cardiac segmentation with temporal consistency

► Proposed temporal pipeline

[Painchaud, IEEE TMI, 2022]
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Cardiac segmentation with temporal consistency [Painchaud, IEEE TMI, 2022]
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Cardiac segmentation with temporal consistency

► Some post-processing examples

[Painchaud, IEEE TMI, 2022]

Original U-Net Post-processed U-Net
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Cardiac segmentation with temporal consistency

► Some post-processing examples

[Painchaud, IEEE TMI, 2022]

Original U-Net Post-processed U-Net
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To conclude
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To conclude

► VAEs can be used effectively in medical imaging

● Guarantee anatomical coherence ✓

● Guarantee temporal consistency ✓

● Estimation uncertainty for image segmentation ✓

● Generative interest limited to simple distribution

► Useful tool for characterizing populations

● Need to properly structure the learned latent space

● Need to work on relatively large cohorts
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Appendix
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How to guarantee the 
anatomical coherence ? 
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Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]

► Constrained Variational Auto Encoder

● Approximation of a latent space with local linear properties

Use of a 1-neuron net to reinforce the linearity of the latent space
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Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]

► Constrained Variational Auto Encoder

● Approximation of a latent space with local linear properties

➔ Linear interpolation in the latent space makes sense

Constrained 
latent space
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Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]

Efficient encoding of anatomical 
shapes in a latent space
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Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]

Reconstruction of masks 
from rejection sampling

Densified latent space with 
5 million points
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Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]

► Definition of 12 anatomical metrics

● (3 criteria) hole(s) in the LV, RV or LA

● (2 criteria) hole(s) between LV and MYO or between 
LV and LA

● (3 criteria) presence of more than one LV, MYO or LA

● (2 criteria) size of the area by which the LV touches 
the background or the MYO touches the LA 

● (1 criterion) ratio between the minimal and maximal 
thickness of the MYO

● (1 criterion) ratio between the width of the LV and 
the average thickness of the MYO
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Densified latent space with 
4 million points

Selection of samples with 
anatomical guarantees

Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]
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Correction of segmentation to 
guarantee the plausibility of 

anatomical shapes

Almost same accuracy as the original 
methods but with correct anatomical 

shapes

Cardiac segmentation with strong anatomical guarantees [Painchaud, IEEE TMI, 2020]
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Uncertainty estimation for 
cardiac image segmentation
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Uncertainty estimation for image segmentation [MICCAI, 2022]

Training procedure



53

Uncertainty estimation for image segmentation [MICCAI, 2022]

Inference procedure
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Uncertainty estimation for image segmentation [MICCAI, 2022]

► Uncertainty results


