

Generative models

Pr. Olivier Bernard Lab. CREATIS – Univ. of Lyon, France

Pr. Christian Desrosier

ETS, Montreal

What is the interest of generative models ?

► **How to generate synthetic faces ?**

By modeling the corresponding distribution $p_{\theta}(\cdot)$!

➔ **Reminder: normal distribution**

What are the interest of generative models ?

► **How to model complex distributions ?**

Face distribution

What are the interest of generative models ?

What are the interest of generative models ?

► **What for ? One obsession is to master the latent space !!!**

Latent space $z_i \in \mathbb{R}^K$

Auto-encoders

How to learn a distribution ?

► **Projection into a simpler, lower-dimensional representation space**

How to learn a complex distribution ?

► **How to have a relevant representation space ?**

Output space $\ \hat{x}_i \in \mathbb{R}^{N \times M}$

Auto-encoder framework

► **Standard architecture**

► **Deep learning loss function**

$$
\text{loss} = \|x - \hat{x}\|^2
$$

► **Encoder / Decoder modeled through (convolutional) neural networks**

Interest of auto-encoders

► **Auto-encoder ? For what purpose ?**

Interest of auto-encoders

► **Data representation**

Pathological cases

► **Generative model**

Limitations

► **Needs to better control the structure of the latent space**

Interest of auto-encoders

► **Generative model with better properties thanks to** *variational framework*

15

Interest of auto-encoders

► **Generative model with variational framework**

Linear interpolation into the latent space

$$
t\cdot z_0+(1-t)\cdot z_7,\qquad 0\leq t\leq 1
$$

Variational autoencoders

All the mathematical details are given there !

<https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html>

Key concepts

► **Enforcing a structured latent space**

➔ **Through a probabilistic framework**

➔ **By imposing continuity**

➔ **By imposing completeness**

Probabilistic framework

► **Mathematical formulation**

Approximation of $p(z|x)$ through a variational inference technique

► **Hypotheses**

\rightarrow $q(z|x)$ is modeled by an axis-aligned Gaussian **distribution**

$$
\quad \blacktriangleright \ \ q(z|x) = \mathcal{N} \left(\mu_x, \sigma_x \right) = \mathcal{N} \left(g(x), diag(h(x)) \right)
$$

$$
(g^*,h^*) = \argmin_{(g,h)}~D_{KL}\left(q(z|x) \parallel p(z|x)\right)
$$

D_{KL}(\cdot || \cdot) *Kullback-Liebler divergence function*

► **Optimization process**

➔ **Maximization of the Evidence Lower Bound (ELBO)**

$$
\mathcal{L} = \mathbb{E}_{z \sim q_x} \left[log \left(p(x|z) \right) \right] - D_{KL} \left(q(z|x) \parallel p(z) \right)
$$

➔ **By exploiting gaussian assumption**

$$
p(x|z) = \mathcal{N}\left(f(z),cI\right)
$$

$$
\mathcal{L} \propto \mathbb{E}_{z \sim q_x} \left[-\alpha \|x - f(z)\|^2 \right] - D_{KL} \left(q(z|x) \parallel p(z) \right)
$$

► **Optimization process**

$$
(f^*,g^*,h^*)=\argmin_{(f,g,h)}\;\;\left(\mathbb{E}_{z\sim q_x}\left[\alpha\|x-f(z)\|^2\right]+D_{KL}\left(q(z|x)\parallel p(z)\right)\right)\;\;\Bigg]
$$

► **Deep learning loss function**

$$
\text{loss} = \alpha \|x - f(z)\|^2 \, + \, D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)\right)\right), \mathcal{N}\left(0, I\right)\right)
$$

$$
q(z|x)\n\left(\n\begin{matrix}\n\mathbf{x} \\
\mathbf{y} \\
\mathbf{y}\n\end{matrix}\n\right)\n\begin{matrix}\n\mathbf{y} \\
\mathbf{y}\n\end{matrix}
$$
\nencoder

- **→** $g(\cdot)$ and $h(\cdot)$ are modeled through an encoder
- **→** $f(·)$ is modeled through a decoder

Probabilistic framework

► **Loss interpretation**

$$
\text{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)\right)\right), \mathcal{N}\left(0, I\right)\right) \, + \, \alpha \|x - f(z)\|^2
$$

Probabilistic framework

► **Loss interpretation**

$$
\text{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)\right)\right), \mathcal{N}\left(0, I\right)\right) \, + \, \alpha \|x - f(z)\|^2
$$

- \rightarrow $\mathcal{N}(g(x), h(x))$ imposes local *continuity*
- ➔ **imposes global** *completeness*

Deep learning implementation

Practical applications

The obsession is to master the latent space !!!

Needs for accurate and robust segmentation of cardiac structures

► **Quantification of clinical indices from echocardiographic images**

Left atrium

Needs for accurate and robust segmentation of cardiac structures

► **Anatomical clinical indices**

How to guarantee temporal consistency ?

► **Quantification of clinical indices from echocardiographic images**

- ► **AR-VAE: attribute-based regularization of VAE latent space** *[Pati, Neural Comp. Appli., 2021]*
	- **Generation of structured latent space**
		- ➔ **Specific continuous-valued attributes forced to be encoded along specific dimensions**
		- \rightarrow Loss = VAE loss + Attribute Regularisation Loss

- ► **AR-VAE: attribute-based regularization of VAE latent space** *[Pati, Neural Comp. Appli., 2021]*
	- **Sampling of the structured latent space**

- ► **AR-VAE: attribute-based regularization of VAE latent space** *[Pati, Neural Comp. Appli., 2021]*
	- **Sampling of the structured latent space**
		- ➔ **Specific attribute (from left to right): area, length, thickness, slant, width, height**
		- ➔ **Each column corresponds to traversal along a regularized dimension**

area Thickness Width

- ► **Application to the description of the cardiac shapes**
	- **Generation of structured latent space according to the following attributes**
		- ➔ **Left ventricle (LV) cavity: area, length, basal width, orientation**
		- ➔ **Myocardial area**
		- ➔ **Epicardial center**

Cardiac segmentation with temporal consistency *[Painchaud, IEEE TMI, 2022]*

► **Proposed temporal pipeline**

Cardiac segmentation with temporal consistency *[Painchaud, IEEE TMI, 2022]*

► **Some post-processing examples**

Original U-Net Post-processed U-Net

► **Some post-processing examples**

To conclude

► **VAEs can be used effectively in medical imaging**

- **Guarantee anatomical coherence** ✓
- **Guarantee temporal consistency**
- **Estimation uncertainty for image segmentation**
- **Generative interest limited to simple distribution**

► **Useful tool for characterizing populations**

- **Need to properly structure the learned latent space**
- **Need to work on relatively large cohorts**

Appendix

How to guarantee the anatomical coherence ?

- ► **Constrained Variational Auto Encoder**
	- **Approximation of a latent space with local linear properties**

Use of a 1-neuron net to reinforce the linearity of the latent space

- ► **Constrained Variational Auto Encoder**
	- **Approximation of a latent space with local linear properties**
		- ➔ **Linear interpolation in the latent space makes sense**

Efficient encoding of anatomical shapes in a latent space

- ► **Definition of 12 anatomical metrics**
	- **(3 criteria) hole(s) in the LV, RV or LA**
	- **(2 criteria) hole(s) between LV and MYO or between LV and LA**
	- **(3 criteria) presence of more than one LV, MYO or LA**
	- **(2 criteria) size of the area by which the LV touches the background or the MYO touches the LA**
	- **(1 criterion) ratio between the minimal and maximal thickness of the MYO**
	- **(1 criterion) ratio between the width of the LV and the average thickness of the MYO**

Correction of segmentation to guarantee the plausibility of anatomical shapes

Almost same accuracy as the original methods but with correct anatomical shapes

Uncertainty estimation for cardiac image segmentation

Uncertainty estimation for image segmentation *[MICCAI, 2022]*

Uncertainty estimation for image segmentation *[MICCAI, 2022]*

Inference procedure $\{z_i^*\}_{i=1:L} \in \mathbb{R}^M$ Pre-filled Segmentation latent space with decoder learned masks Q_{ψ} $\bar{Z}_y \in \mathbb{R}^{Nb_y \times M}$ $\{\bar{y}_i^*\}_{i=1:L}$ $\in \mathbb{R}^{M \times N}$ W_y New image von Mises-Fisher $U=\frac{1}{L}\sum_{i}^{L}\bar{w}_i^*\left(\bar{y}_i^*-y^*\right)$ Image encoder W_x distribution P_θ $\{\bar{w}_i^*\}_{i=1:L}$ $\in \mathbb{R}^{K \times N}$ x^* Uncertainty $z \in \mathbb{R}^M$ map Co-latent space

 y^* **Predicted mask**

► **Uncertainty results**

